Estrada, B., Aroca, R., Maathuis, F. J., Barea, J. M. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 36, 1771–1782 (2013).
Uva, R. H. & Whitlow, T. H. Beach plum (Prunus maritima Marsh.): Small farm sustainability through crop diversification and value added products. HortScience 38, 793 (2003).
Yan, D. L., Wang, G., Fang, K., Zai, X. M. & Qin, P. Introduction, cultivation and utilization of salt-tolerance beach plum. China For. Sci. Technol. 20, 67–69 (2006).
Zhang, H. S., Wu, X. H. & Li, G. Interactions between arbuscular mycorrhizal fungi and phosphate solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fert. Soils 47, 543–554 (2011).
Ait-El-Mokhtar, M. et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front. Sustain. Food Syst. 4, 131 (2020).
Porcel, R., Redondo-Gómez, S. & Mateos-Naranjo, E. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75–83 (2015).
Sheng, M., Tang, M. & Chen, H. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296 (2008).
Harbinson, J. Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell Environ. 36, 1751–1754 (2013).
Zhu, X. C., Song, F. B., Liu, S. Q. & Liu, T. D. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58, 186–191 (2012).
Wang, F., Sun, Y. & Shi, Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7, 289 (2019).
Qiu, Y. J. et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol. Mol. Plant Pathol. 112, 101522 (2020).
Zhang, H. S., Qin, P. & Zhang, W. M. Effects of inoculation of arbuscular mycorrhizal fungus and Apophysomyces spartina on P-uptake of castor oil plant (Ricinus communis L.) and rhizosphere soil enzyme activities under salt stress. Agri. Sci. Technol. 15, 659 (2014).
Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).
Augé, R. M., Toler, H. D., Sams, C. E. & Nasim, G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18, 115–121 (2008).
Sharma, S., Compant, S., Ballhausen, M. B., Ruppel, S. & Franken, P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol. Res. 240, 126556 (2020).
Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biot. 95, 851–859 (2012).
Ait-El-Mokhtar, M. et al. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hort. 253, 429–438 (2019).
Zai, X. M., Zhu, S. N., Qin, P., Che, L. & Luo, F. X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323–328 (2012).
Navarro, J. M., Pérez-Tornero, O. & Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 171, 76–85 (2014).
Toro, M., Azcon, R. & Herrera, R. Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol. Fertil. Soils 21, 23–29 (1996).
Singh, S. & Kapoor, K. K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 28, 139–144 (1999).
Osorio, N. W. & Habte, M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res. Manag. 15, 263–274 (2001).
Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agron. Sustain Dev. 27, 29–43 (2007).
Saxena, J., Saini, A., Ravi, I., Chandra, S. & Garg, V. Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J. Crop Improv. 29, 353–369 (2015).
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
Ben-Laouane, R., Baslam, M., Ait-El-Mokhtar, M., Anli, M. & Meddich, A. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8, 1695 (2020).
Hodge, A., Campbell, C. D. & Fitter, A. H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–299 (2001).
Johansen, A., Finlay, R. D. & Olsson, P. A. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712 (1996).
Vicente-Sánchez, J. et al. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24, 339–348 (2014).
Abdel-Fattah, G. M. & Asrar, A. W. A. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267–277 (2012).
Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 369–388 (Academic Press, 2012).
Abd-Allah, E. F. & Egamberdieva, D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 48, 37–45 (2016).
Van den Driessche, R. Effects of nutrients on stock performance in the forest. In Mineral Nutrition of Conifer Seedlings (ed. van den Driessche, R.) 229–260 (CRC Press, 1991).
Ebel, R. C., Duan, X., Still, D. W. & Augé, R. M. Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol. 135, 755–761 (1997).
Ruiz-Lozano, J. M. & Aroca, R. Host response to osmotic stresses: Stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function 239–256 (Springer, 2010).
Birhane, E., Sterck, F. J., Fetene, M., Bongers, F. & Kuyper, T. W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169, 895–904 (2012).
Evelin, H., Giri, B. & Kapoor, R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonellafoenum graecum. Mycorrhiza 23, 71–86 (2012).
Aroca, R. et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55 (2013).
Jungklang, J. Physiological and biochemical mechanisms of salt tolerance in Sesbania rostrata Berm and Obem. PhD Thesis (Agric Univ Teckuba, 2005).
Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: Examination of future possibilities. J. Exp. Bot. 55, 1607–1621 (2004).
Nwugo, C. C. & Huerta, A. J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311, 73–86 (2008).
Henriques, F. S. Leaf chlorophyll fluorescence: Background and fundamentals for plant biologist. Bot. Rev. 75, 249–270 (2009).
Gong, M. G., Tang, M., Chen, H., Zhang, Q. & Feng, X. Effects of two Glomus species on the growth and physiological performance of Sophor davidii seedlings under water stress. New For. 44, 399–408 (2013).
Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rate of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses. Soil Biol. Biochem. 41, 1233–1244 (2009).
Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Univ. Calif. Agric. Res. Stn. Circ. 347, 1–39 (1950).
Bradstreet, R. B. The kjeldahl method of organic nitrogen. Anal. Chem. 26, 185–187 (1965).
Li, Z. G., Luo, Y. M. & Teng, Y. Research Methods of Soil and Environmental Microorganisms 64–83 (Science Press, 2008).
Mcgonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
Xie, Z., Song, F., Xu, H., Shao, H. & Song, R. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci. World J. 2014, 1–6 (2014).
Chen, X. L., Li, S. Q., Ren, X. L. & Li, S. X. Effect of atmospheric NH3 and hydroponic solution nitrogen levels on chlorophyll fluorescence of corn genotypes with different nitrogen use efficiencies. Acta Ecol. Sin. 28, 1026–1032 (2008).
Source: Ecology - nature.com