in

Emerging strategies for precision microbiome management in diverse agroecosystems

  • 1.

    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Liu, H., Macdonald, C. A., Cook, J., Anderson, I. C. & Singh, B. K. An ecological loop: host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host–symbiont dependence. Nat. Commun. 8, 1–8 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Dubey, A. et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers. Conserv. 28, 2405–2429 (2019).

    Article  Google Scholar 

  • 11.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Hartmann, A. et al. Assessment of the structural and functional diversities of plant microbiota: achievements and challenges—a review. J. Adv. Res. 19, 3–13 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).

    Article  Google Scholar 

  • 14.

    Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: from fundamental to applied. Front. Plant Sci. 9, 1205 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Mariotte, P. et al. Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Porter, S. S. & Sachs, J. L. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 35, 426–439 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Lòpez-Fernàndez, S., Mazzoni, V., Pedrazzoli, F., Pertot, I. & Campisano, A. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Front. Microbiol. 8, 834 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Kim, D. R. et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10, 4802 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Adeleke, R. A., Raimi, A. R., Roopnarain, A. & Mokubedi, S. M. in Biofertilizers for Sustainable Agriculture and Environment Vol 55 (eds Bhoopander, G. et al.) 137–172 (Springer, 2019).

  • 23.

    Besset-Manzoni, Y., Rieusset, L., Joly, P., Comte, G. & Prigent-Combaret, C. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ. Sci. Pollut. Res. 25, 29953–29970 (2018).

    Article  Google Scholar 

  • 24.

    Hussain, S., Siddique, T., Saleem, M., Arshad, M. & Khalid, A. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv. Agron. 102, 159–200 (2009).

    CAS  Article  Google Scholar 

  • 25.

    Wolmarans, K. & Swart, W. J. Influence of glyphosate, other herbicides and genetically modified herbicide-resistant crops on soil microbiota: a review. South Afr. J. Plant Soil 31, 177–186 (2014).

    Article  Google Scholar 

  • 26.

    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).

    CAS  Article  Google Scholar 

  • 27.

    Venter, Z. S., Jacobs, K. & Hawkins, H. J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).

    Article  Google Scholar 

  • 28.

    Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur. J. Soil Biol. 49, 22–30 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Bünemann, E. K., Schwenke, G. D. & Van Zwieten, L. Impact of agricultural inputs on soil organisms—a review. Aust. J. Soil Res. 44, 379–406 (2006).

    Article  Google Scholar 

  • 30.

    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Chen, H. et al. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric. Ecosyst. Environ. 293, 106841 (2020).

    CAS  Article  Google Scholar 

  • 32.

    Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Ullah, M. & Dijkstra, F. Fungicide and bactericide effects on carbon and nitrogen cycling in soils: a meta-analysis. Soil Syst. 3, 23 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi. Sci. Total Environ. 710, 136326 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Gómez-Gallego, C. et al. Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol. Lett. 367, fnaa050 (2019).

    Article  CAS  Google Scholar 

  • 36.

    Jenkins, M., Locke, M., Reddy, K., McChesney, D. S. & Steinriede, R. Glyphosate applications, glyphosate resistant corn, and tillage on nitrification rates and distribution of nitrifying microbial communities. Soil Sci. Soc. Am. J. 81, 1371–1380 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Megharaj, M. Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci. Total Environ. 654, 177–189 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Felsot, A. S. Enhanced biodegradation of insecticides in soil: implications for agroecosystems. Annu. Rev. Entomol. 34, 453–476 (1989).

    CAS  Article  Google Scholar 

  • 39.

    Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Tago, K., Kikuchi, Y., Nakaoka, S., Katsuyama, C. & Hayatsu, M. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs. Mol. Ecol. 24, 3766–3778 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Zhang, J. et al. Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing. Comp. Biochem. Physiol. D 20, 151–158 (2016).

    Google Scholar 

  • 42.

    Xia, X. et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front. Microbiol. 9, 25 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Almeida, L. G., de, Moraes, L. A. B., de, Trigo, J. R., Omoto, C. & Cônsoli, F. L. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLoS ONE 12, e0174754 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Bowles, T. M., Jackson, L. E., Loeher, M. & Cavagnaro, T. R. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 54, 1785–1793 (2017).

    Article  Google Scholar 

  • 45.

    Valente, J., Gerin, F., Le Gouis, J., Moënne-Loccoz, Y. & Prigent-Combaret, C. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant. Cell Environ. 43, 246–260 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Newton, A. C., Gravouil, C. & Fountaine, J. M. Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann. Appl. Biol. 157, 343–359 (2010).

    Article  Google Scholar 

  • 47.

    Huang, X., Zhao, J., Zhou, X., Zhang, J. & Cai, Z. Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma 348, 124–134 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Karlsson, I., Friberg, H., Steinberg, C. & Persson, P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS ONE 9, e111786 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Schaeffer, R. N., Vannette, R. L., Brittain, C., Williams, N. M. & Fukami, T. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers. Environ. Microbiol. Rep. 9, 79–84 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Lagnaoui, A. & Radcliffe, E. B. Potato fungicides interfere with entomopathogenic fungi impacting population dynamics of green peach aphid. Am. J. Potato Res. 75, 19–25 (1998).

    CAS  Article  Google Scholar 

  • 51.

    Sarkar, S., Narayanan, P., Divakaran, A., Balamurugan, A. & Premkumar, R. The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish J. Biol. 34, 399–403 (2010).

    CAS  Google Scholar 

  • 52.

    Duke, S. O. Interaction of chemical pesticides and their formulation ingredients with microbes associated with plants and plant pests. J. Agric. Food Chem. 66, 7553–7561 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Kakumanu, M. L., Reeves, A. M., Anderson, T. D., Rodrigues, R. R. & Williams, M. A. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    del Mar Fernández, M. et al. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: deep sequencing, esterase and toxicity tests. Pest Manag. Sci. 75, 79–86 (2019).

    Article  CAS  Google Scholar 

  • 55.

    Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. mSystems 5, e00268-20 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Steffan, S. A. et al. Omnivory in bees: elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Bernauer, O. M., Gaines-Day, H. R. & Steffan, S. A. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure. Insects 6, 478–488 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Yoder, J. A., Nelson, B. W., Jajack, A. J. & Sammataro, D. in Beekeeping – From Science to Practice (eds Vreeland, R. H. & Sammatoro, D.) 73–90 (Springer, 2017).

  • 59.

    Vida, C., Vicente, A. & Cazorla, F. M. The role of organic amendments to soil for crop protection: induction of suppression of soilborne pathogens. Ann. Appl. Biol. 176, 1–15 (2020).

    Article  Google Scholar 

  • 60.

    Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Ling, N. et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99, 137–149 (2016).

    CAS  Article  Google Scholar 

  • 62.

    Li, X. et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 13, 738–751 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).

    Article  CAS  Google Scholar 

  • 64.

    Osipitan, O. A., Dille, J. A., Assefa, Y. & Knezevic, S. Z. Cover crop for early season weed suppression in crops: systematic review and meta-analysis. Agron. J. 110, 2211–2221 (2018).

    Article  Google Scholar 

  • 65.

    Hokkanen, H. M. T. & Menzler-Hokkanen, I. Insect pest suppressive soils: buffering pulse cropping systems against outbreaks of Sitona weevils. Ann. Entomol. Soc. Am. 111, 139–143 (2018).

    Article  Google Scholar 

  • 66.

    Esmaeili Taheri, A., Hamel, C. & Gan, Y. Cropping practices impact fungal endophytes and pathogens in durum wheat roots. Appl. Soil Ecol. 100, 104–111 (2016).

    Article  Google Scholar 

  • 67.

    Lucas, S. T., D’Angelo, E. M. & Williams, M. A. Improving soil structure by promoting fungal abundance with organic soil amendments. Appl. Soil Ecol. 75, 13–23 (2014).

    Article  Google Scholar 

  • 68.

    Misra, P. et al. Vulnerability of soil microbiome to monocropping of medicinal and aromatic plants and its restoration through intercropping and organic amendments. Front. Microbiol. 10, 2604 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Nicola, L. et al. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Appl. Soil Ecol. 113, 71–79 (2017).

    Article  Google Scholar 

  • 70.

    Nobbe, F. & Hiltner, L. Inoculation of the soil for cultivating leguminous plants. US Patent 570 (1896).

  • 71.

    Thilakarathna, M. S. & Raizada, M. N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol. Biochem. 105, 177–196 (2017).

    CAS  Article  Google Scholar 

  • 72.

    Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. N. Phytol. 222, 543–555 (2019).

    CAS  Article  Google Scholar 

  • 73.

    Veresoglou, S. D. & Menexes, G. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337, 469–480 (2010).

    CAS  Article  Google Scholar 

  • 74.

    Federici, B. A., Bonning, B. C. & St. Leger, R. J. in Patho-Biotechnology (eds Sleator, R. & Hill, C.) 15–40 (CRC Press, 2008).

  • 75.

    Johnson, L. J. et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 60, 171–188 (2013).

    Article  Google Scholar 

  • 76.

    Castillo Lopez, D., Zhu-Salzman, K., Ek-Ramos, M. J. & Sword, G. A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9, e103891 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Sessitsch, A., Pfaffenbichler, N. & Mitter, B. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24, 194–198 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Stephan, J. G. et al. Honeybee-specific lactic acid bacterium supplements have no effect on American foulbrood-infected honeybee colonies. Appl. Environ. Microbiol. 85, e00606-19 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Bacilio, M., Moreno, M., Lopez-Aguilar, D. R. & Bashan, Y. Scaling from the growth chamber to the greenhouse to the field: demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids. Appl. Soil Ecol. 119, 327–338 (2017).

    Article  Google Scholar 

  • 80.

    Latz, M. A. C., Jensen, B., Collinge, D. B. & Lyngs Jørgensen, H. J. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biol. Control 141, 104128 (2020).

    CAS  Article  Google Scholar 

  • 81.

    Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Smith, K. P., Handelsman, J. & Goodman, R. M. Genetic basis in plants for interactions with disease-suppressive bacteria. Proc. Natl Acad. Sci. USA 96, 4786–4790 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Shrestha, A. et al. Genetic differences in barley govern the responsiveness to N-acyl homoserine lactone. Phytobiomes J. 3, 191–202 (2019).

    Article  Google Scholar 

  • 84.

    Chowdhury, S. P. et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8, e68818 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Papavizas, G. C. Survival of Trichoderma harzianum in soil and in pea and bean rhizospheres. Phytopathology 72, 121 (1982).

    Article  Google Scholar 

  • 86.

    Hungria, M., Campo, R. J., Chueire, L. M. O., Grange, L. & Megías, M. Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biol. Fertil. Soils 33, 387–394 (2001).

    CAS  Article  Google Scholar 

  • 87.

    Cassán, F. & Diaz-Zorita, M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117–130 (2016).

    Article  CAS  Google Scholar 

  • 88.

    Ojiambo, P. S., Battilani, P., Cary, J. W., Blum, B. H. & Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology 108, 1024–1037 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Karise, R. et al. Reliability of the entomovector technology using Prestop-Mix and Bombus terrestris L. as a fungal disease biocontrol method in open field. Sci. Rep. 6, 31650 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Hawkes, C. V. & Connor, E. W. Translating phytobiomes from theory to practice: ecological and evolutionary considerations. Phytobiomes J. 1, 57–69 (2017).

    Article  Google Scholar 

  • 91.

    Mitter, B. et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol. 8, 11 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    Prado, A., Marolleau, B., Vaissière, B. E., Barret, M. & Torres-Cortes, G. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10, 3575 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Bosworth, A. H. et al. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl. Environ. Microbiol. 60, 3815–3832 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Suárez, R. et al. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant Microbe Interact. 21, 958–966 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 95.

    Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Sarma, B. K., Yadav, S. K., Singh, S. & Singh, H. B. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol. Biochem. 87, 25–33 (2015).

    CAS  Article  Google Scholar 

  • 97.

    Becker, J., Eisenhauer, N., Scheu, S. & Jousset, A. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol. Lett. 15, 468–474 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 98.

    Hu, J. et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio 7, e01790-16 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 99.

    Nuzzo, A., Satpute, A., Albrecht, U. & Strauss, S. L. Impact of soil microbial amendments on tomato rhizosphere microbiome and plant growth in field soil. Microb. Ecol. 80, 398–409 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 100.

    Xu, X. M. & Jeger, M. J. Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103, 108–116 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 101.

    Guijarro, B. et al. Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biol. Control 129, 45–54 (2019).

    Article  Google Scholar 

  • 102.

    Rubin, R. L., van Groenigen, K. J. & Hungate, B. A. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416, 309–323 (2017).

    CAS  Article  Google Scholar 

  • 103.

    Rho, H. et al. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb. Ecol. 75, 407–418 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Johnson, K. B., Temple, T. N., Elkins, R. B. & Smith, T. J. Strategy for non-antibiotic fire blight control in U.S.-grown organic pome fruit. Acta Hortic. 1056, 93–100 (2014).

    Article  Google Scholar 

  • 105.

    Temple, T. N., Thompson, E. C., Uppala, S. S., Granatstein, D. & Johnson, K. Floral colonization dynamics and specificity of Aureobasidium pullulans strains used to suppress fire blight of pome fruit. Plant Dis. 104, 121–128 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Rotolo, C. et al. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Pest Manag. Sci. 74, 715–725 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Abbey, J. A., Percival, D., Asiedu, S. K., Prithiviraj, B. & Schilder, A. Management of Botrytis blossom blight in wild blueberries by biological control agents under field conditions. Crop Prot. 131, 105078 (2020).

    CAS  Article  Google Scholar 

  • 108.

    Morel, M. A., Cagide, C., Minteguiaga, M. A., Dardanelli, M. S. & Castro-Sowinski, S. The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol. Plant Microbe Interact. 28, 134–142 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Remans, R. et al. Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312, 25–37 (2008).

    CAS  Article  Google Scholar 

  • 110.

    Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 111.

    Santhanam, R. et al. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl Acad. Sci. USA 112, E5013–E5020 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 117.

    Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 118.

    Pineda, A., Kaplan, I. & Bezemer, T. M. Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci. 22, 770–778 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 119.

    Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Jochum, M. D., McWilliams, K. L., Pierson, E. A. & Jo, Y. K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 14, e0225933 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 122.

    Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 123.

    Arora, J., Mars Brisbin, M. A. & Mikheyev, A. S. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 8, e9350 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 124.

    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 125.

    Mason, C. J. et al. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl Acad. Sci. USA 116, 15991–15996 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 126.

    Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 128.

    Wallace, J. G., Kremling, K. A., Kovar, L. L. & Buckler, E. S. Quantitative genetics of the maize leaf microbiome. Phytobiomes J. 2, 208–224 (2018).

    Article  Google Scholar 

  • 129.

    Huang, R. et al. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. N. Phytol. 225, 1762–1776 (2020).

    CAS  Article  Google Scholar 

  • 130.

    Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 131.

    French, E., Tran, T. & Iyer-Pascuzzi, A. Tomato genotype modulates selection and responses to root microbiota. Phytobiomes J. 4, 314–326.

  • 132.

    Wintermans, P. C. A., Bakker, P. A. H. M. & Pieterse, C. M. J. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol. Biol. 90, 623–634 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 133.

    Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 134.

    Hacquard, S., Spaepen, S., Garrido-Oter, R. & Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55, 565–589 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 135.

    Mendes, L. W., Mendes, R., Raaijmakwers, J. M. & Tsai, S. M. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 12, 3038–3042 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 136.

    Koprivova, A. et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc. Natl Acad. Sci. USA 116, 15735–15744 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 137.

    Vílchez, J. I. et al. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat. Plants 6, 983–995 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 138.

    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 139.

    Esse, H. P., Reuber, T. L. & Does, D. Genetic modification to improve disease resistance in crops. N. Phytol. 225, 70–86 (2020).

    Article  Google Scholar 

  • 140.

    Ryu, M. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5, 80–84 (2020).

    Article  CAS  Google Scholar 

  • 141.

    Murphy, K. A., Tabuloc, C. A., Cervantes, K. R. & Chiu, J. C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 6, 22587 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 142.

    Whitten, M. M. A. et al. Symbiont-mediated RNA interference in insects. Proc. R. Soc. B 283, 20160042 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 143.

    Chung, S. H., Jing, X., Luo, Y. & Douglas, A. E. Targeting symbiosis-related insect genes by RNAi in the pea aphid–Buchnera symbiosis. Insect Biochem. Mol. Biol. 95, 55–63 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 144.

    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 145.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    CAS  Article  Google Scholar 

  • 146.

    Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  CAS  Google Scholar 

  • 147.

    Geddes, B. A. et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat. Commun. 10, 3430 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 148.

    Petrosino, J. F. The microbiome in precision medicine: the way forward. Genome Med. 10, 12 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 149.

    Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).

    Article  Google Scholar 

  • 150.

    Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 151.

    Vannette, R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51, 363–386 (2020).

    Article  Google Scholar 

  • 152.

    Pineda, A., Kaplan, I., Hannula, S. E., Ghanem, W. & Bezemer, M. T. Conditioning the soil microbiome through plant‐soil feedbacks suppresses an aboveground insect pest. New Phytol. 226, 595–608 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 153.

    Blundell, R. et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 6, 483–491 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 154.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 155.

    Gu, S. et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 156.

    Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 157.

    Kaplan, I. et al. Phylogenetic farming: can evolutionary history predict crop rotation via the soil microbiome? Evol. Appl. 13, 1984–1999 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 158.

    Chang, H. X., Haudenshield, J. S., Bowen, C. R. & Hartman, G. L. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 8, 519 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 159.

    Ribière, C., Hegarty, C., Stephenson, H., Whelan, P. & O’Toole, P. W. Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microb. Ecol. 78, 195–205 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 160.

    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 161.

    Bainard, L. D., Bainard, J. D., Hamel, C. & Gan, Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol. Ecol. 88, 333–344 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 162.

    Stedtfeld, R. D. et al. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 94, fiy130 (2018).

    CAS  Article  Google Scholar 

  • 163.

    Shade, A. Diversity is the question, not the answer. ISME J. 11, 1–6 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 164.

    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).

    Article  Google Scholar 

  • 165.

    Shao, H. & Zhang, Y. Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci. Rep. 7, 5521 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 166.

    Wu, M. et al. Rational dose of insecticide chlorantraniliprole displays a transient impact on the microbial metabolic functions and bacterial community in a silty-loam paddy soil. Sci. Total Environ. 616–617, 236–244 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 167.

    Adak, T. et al. Target and non-target effect of commonly used fungicides on microbial properties in rhizospheric soil of rice. Int. J. Environ. Anal. Chem. 100, 1350–1361 (2019).

    Article  CAS  Google Scholar 

  • 168.

    Wang, Y. et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 609, 341–347 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 169.

    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 170.

    Zhu, S., Vivanco, J. M. & Manter, D. K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 107, 324–333 (2016).

    Article  Google Scholar 

  • 171.

    Yeoh, Y. K. et al. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ. Microbiol. 18, 1338–1351 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 172.

    Liu, Y. & Ludewig, U. Nitrogen-dependent bacterial community shifts in root, rhizome and rhizosphere of nutrient-efficient Miscanthus x giganteus from long-term field trials. GCB Bioenergy 11, 1334–1347 (2019).

    CAS  Article  Google Scholar 

  • 173.

    Shaharoona, B., Naveed, M., Arshad, M. & Zahir, Z. A. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79, 147–155 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 174.

    Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7, 136 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 175.

    Shen, W. et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 337, 137–150 (2010).

    CAS  Article  Google Scholar 

  • 176.

    Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 197, 104501 (2020).

    Article  Google Scholar 

  • 177.

    Kraut-Cohen, J. et al. Effects of tillage practices on soil microbiome and agricultural parameters. Sci. Total Environ. 705, 135791 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 178.

    Mavrodi, D. V. et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant Sci. 9, 345 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 179.

    Hartmann, M. et al. A decade of irrigation transforms the soil microbiome of a semi‐arid pine forest. Mol. Ecol. 26, 1190–1206 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 180.

    Palacios, O. A. et al. Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric. Water Manag. 184, 19–27 (2017).

    Article  Google Scholar 

  • 181.

    Mavrodi, D. V. et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant. Sci. 9, 345 (2018).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Startup empowers women to improve access to safe drinking water

    Multifaceted characteristics of dryland aridity changes in a warming world