Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 6 (Cambridge University Press, 2007).
Gordon, M. et al. in Global Assessment Report on Disaster Risk Reduction Ch. 3 (UNDRR, 2019).
Dominey-Howes, D. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Nat. Hazards 25, 195–224 (2002).
Google Scholar
Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. & Pham, T. D. Integrated different records to assess coastal hazards at multi-century timescales. J. Coastal Res. 70, 723–728 (2014).
Google Scholar
Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).
Google Scholar
Liu, K. B. & Fearn, M. L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Res. 54, 238–245 (2000).
Google Scholar
Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature 447, 465–468 (2007).
Google Scholar
Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).
Google Scholar
Gouramanis, C. et al. High-frequency coastal overwash deposits from Phra Thong Island, Thailand. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Nanayama, F. et al. differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment. Geol. 135, 255–264 (2000).
Google Scholar
Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).
Google Scholar
Marriner, N. et al. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 3, e1700485 (2017).
Google Scholar
Vött, A. et al. Returning to facts: response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Corinth, Greece) by ‘non-catastrophists’ – Reaffirmed evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceding pre-historical event in the early 8th cent. BC. Zeitschriff Geomorphologie 61, 275–302 (2018).
Shanmugam, G. The tsunamite problem. J. Sediment. Res. 76, 718–730 (2006).
Google Scholar
Chagué-Goff, C., Chan, J. C. H., Goff, J. & Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 25, 333–349 (2016).
Google Scholar
Pham, D. T. et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Mar. Geol. 385, 274–292 (2017).
Google Scholar
Sawai, Y. et al. Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean Tsunami at Phra Thong Island, Thailand. Mar. Micropaleontol. 73, 70–79 (2009).
Google Scholar
Pilarczyk, J. E. et al. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogrogr. Palaeocl. 413, 144–157 (2017).
Google Scholar
Gouramanis C. in Geological Records of Tsunamis and other Extreme Waves (eds Engel, M., Pilarczyk, J., May, S. M., Brill, D. & Garrett, E.) Ch. 13 (Elsevier, 2020).
Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243, 70–88 (2012).
Google Scholar
Asano, R. et al. Changes in bacterial communities in seawater-flooded soil in the four years after the 2011 Tohoku tsunami in Japan. J. Mar. Sci. Eng. 8, 76 (2020).
Google Scholar
Atwater, B. F. et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 13, 301–368 (2017).
Google Scholar
Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).
Google Scholar
Ramesh, S., Jayaprakashvel, M. & Mathivanan, N. Microbial status in seawater and coastal sediment during pre- and post-tsunami periods in the Bay of Bengal, India. Mar. Ecol. 27, 198–203 (2006).
Google Scholar
Nayak, A. K. et al. Post tsunami changes in soil properties of Andaman Islands, India. Environ. Monit. Assess. 170, 185–193 (2010).
Google Scholar
Godson, P. S., Chandrasekar, N., Kumar, S. K. & Vimi, P. V. Microbial diversity in coastal sediments during pre- and post-tsunami periods in the south east coast of India. Front. Biol. 9, 161–167 (2014).
Google Scholar
Hiraoka, S. et al. Genomic and metagenomics analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 17, 1–13 (2016).
Google Scholar
Asano, R. et al. Seawater inundation from the 2011 Tohoku Tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639–646 (2013).
Google Scholar
Somboonna, N. et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE 9, e94236 (2014).
Google Scholar
Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8, 1904–1919 (2014).
Google Scholar
Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
Google Scholar
Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9. 0 Tohoku Earthquake. Sci. Rep. 2, 1–7 (2012).
Google Scholar
Morimura, S., Zeng, X., Noboru, N. & Hosono, T. Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. J. Hydrol. 581, 124341 (2020).
Google Scholar
Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).
Google Scholar
Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol. Biol. R 68, 669–685 (2004).
Google Scholar
Szczuciński, W. et al. Ancient sedimentary DNA reveals past tsunami deposits. Mar. Geol. 381, 29–33 (2016).
Google Scholar
Nealson, K. H. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Pl. Sc 25, 403–434 (1997).
Google Scholar
Srinivasalu, S., Karthikeyan, A., Switzer, A. D. & Gouramanis, C. Sedimentological characteristics of tsunami and storm deposits: a modern analogue from Southeast Indian Coast. In Paper Presented at the AOGS-AGU Join Assembly, Singapore, 13–17 September 2012 (2012)
Switzer, A. D., Srinivasalu, S., Thangadurai, N. & Mohan, V. R. Bedding structures in Indian tsunami deposits provide clues to the dynamics of tsunami inundation. Geol. Soc. Spec. Publ. 361, 61–77 (2012).
Google Scholar
Gouramanis, C. et al. Same Same, but different: sedimentological comparison of recent storm and Tsunami deposits from the south-eastern coastline of India. In Paper presented in AGU Fall Meeting (NH21A-3811), San Francisco, California, 15 – 19 December 2014 (2014).
Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. J. Anim. Ecol. 12, 42–58 (1943).
Google Scholar
Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).
Google Scholar
Xu, X. et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Sci. Rep. 5, 1–8 (2020).
Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
Google Scholar
Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).
Google Scholar
Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 63, 5–30 (2012).
Google Scholar
Szczuciński, W. et al. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan – Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 282, 40–56 (2012).
Google Scholar
Costa, P. J. M. et al. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geol. Soc. Spec. Publ. 456, 167–190 (2018).
Google Scholar
Dominey-Howes, D., Dawson, A. & Smith, D. Late Holocene coastal tectonics at Falasarna, western Crete: a sedimentary study. Geol. Soc. Spec. Publ. 146, 343–352 (1999).
Google Scholar
Switzer, A. D. & Jones, B. G. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18, 787–803 (2008).
Google Scholar
Waring, B. & Hawkes, C. V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 94, fiy001 (2018).
Chénard, C. et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).
Google Scholar
Saxena, G. et al. Metagenomics reveals the influence of land use and rain on the benthic microbial communities in a tropical urban waterway. mSystems 3, e00136–17 (2018).
Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS ONE 9, e87624 (2014).
Google Scholar
Mariadassou, M., Pichon, S. & Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982 (2015).
Google Scholar
Sheth, A., Sanyal, S., Jaiswal, A. & Gandhi, P. Effects of the December 2004 India Ocean Tsunami on the Indian mainland. Earthq. Spectra 22, S435–S473 (2006).
Google Scholar
Blot, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237–1248 (2001).
Google Scholar
Folk, R. L. & Ward, W. C. Brazos river bar: a study in the significance of grain size parameter. J. Sediment. Res. 27, 3–26 (1957).
Google Scholar
Sambrook, J., Russell, D., & Sambrook, J. in The Condensed Protocols from Molecular Cloning: A Laboratory Manual (eds Sambrook, J. & Russell, D. W.) (Cold Spring Harbor Laboratory Press, 2006).
Wilkins, D., Van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 1–7 (2013).
Google Scholar
Allen, M. A. & Cavicchioli, R. Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci. Rep. 7, 1–16 (2017).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R https://www.R-project.org/ (2017).
Oksanen, J. et al. vegan: Community Ecology Package. Vienna: R Foundation for Statistical Computing.[Google Scholar]. (2016).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Anderson, M. & Ter Braa, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73, 85–113 (2003).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Met. 57, 289–300 (1995).
Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).
Google Scholar
Source: Ecology - nature.com