in

Environmental factors shape the epiphytic bacterial communities of Gracilariopsis lemaneiformis

  • 1.

    Roth-Schulze, A. J. et al. Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp. Mol. Ecol. 27, 1952–1965 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).

    Article 

    Google Scholar 

  • 3.

    Goecke, F., Labes, A., Wiese, J. & Imhoff, J. F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409, 267–300 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Singh, R. P. & Reddy, C. R. K. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 88, 213–230 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M. & Kim, H. S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Ismail, A. et al. Antimicrobial activities of bacteria associated with the brown alga padina pavonica. Front. Microbiol. 7, 1–13 (2016).

    Google Scholar 

  • 7.

    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 6, 339–367 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Karthick, P. & Mohanraju, R. Antimicrobial potential of epiphytic bacteria associated with seaweeds of little Andaman, India. Front. Microbiol. 9, 1–11 (2018).

    Article 

    Google Scholar 

  • 9.

    El Shafay, S. M., Ali, S. S. & El-Sheekh, M. M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res. 42, 65–74 (2016).

    Article 

    Google Scholar 

  • 10.

    Dobretsov, S. V. & Qian, P. Y. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18, 217–228 (2002).

    Article 

    Google Scholar 

  • 11.

    Mieszkin, S., Callow, M. E. & Callow, J. A. Interactions between microbial biofilms and marine fouling algae: A mini review. Biofouling 29, 1097–1113 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5, 590–600 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Tujula, N. A. et al. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J. 4, 301–311 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. 108, 14288–14293 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Roth-Schulze, A. J., Zozaya-Valdés, E., Steinberg, P. D. & Thomas, T. Partitioning of functional and taxonomic diversity in surface-associated microbial communities. Environ. Microbiol. 18, 4391–4402 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 1–13 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Aires, T., Serrão, E. A. & Engelen, A. H. Host and environmental specificity in bacterial communities associated to two highly invasive marine species (genus Asparagopsis). Front. Microbiol. 7, 1–14 (2016).

    Article 

    Google Scholar 

  • 18.

    Lachnit, T., Fischer, M., Künzel, S., Baines, J. F. & Harder, T. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol. Ecol. 84, 411–420 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Nylund, G. M. et al. The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiol. Ecol. 71, 84–93 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Campbell, A. H., Marzinelli, E. M., Gelber, J. & Steinberg, P. D. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front. Microbiol. 6, 1–10 (2015).

    Article 

    Google Scholar 

  • 21.

    Munday, P. L. Competitive coexistence of coral-dwelling fishes: The lottery hypothesis revisited. Ecology 85, 623–628 (2004).

    Article 

    Google Scholar 

  • 22.

    Geange, S. W., Poulos, D. E., Stier, A. C. & McCormick, M. I. The relative influence of abundance and priority effects on colonization success in a coral-reef fish. Coral Reefs 36, 151–155 (2017).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K. & Wahl, M. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. Microbiologyopen 2, 338–349 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K. & Wahl, M. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus. FEMS Microbiol. Ecol. 88, 272–279 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Zhang, Y. et al. Effect of salinity on the microbial community and performance on anaerobic digestion of marine macroalgae. J. Chem. Technol. Biotechnol. 92, 2392–2399 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Liao, L. & Xu, Y. Effects of nitrogen nutrients on growth and epiphytic bacterial composition in sea weed Gracilaria lemaneiformis. Fish. Sci. 28, 130–135 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Zozaya-Valdés, E., Roth-Schulze, A. J. & Thomas, T. Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community. Front. Microbiol. 7, 1–10 (2016).

    Article 

    Google Scholar 

  • 28.

    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Liu, X. et al. Isolation and pathogenicity identification of bacterial pathogens in bleached disease and their physiological effects on the red macroalga Gracilaria lemaneiformis. Aquat. Bot. 153, 1–7 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Xie, X. et al. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea. Sci. Total Environ. 598, 97–108 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Yang, Y. et al. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res. 9, 236–244 (2015).

    Article 

    Google Scholar 

  • 32.

    Lindström, E. S. & Langenheder, S. Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4, 1–9 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Hellweger, F. L., Van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science (80-. ). 345, 1346–1349 (2014).

  • 34.

    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. 48, 217–229 (2007).

    Article 

    Google Scholar 

  • 35.

    Lachnit, T., Meske, D., Wahl, M., Harder, T. & Schmitz, R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 13, 655–665 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Pei, P. et al. Effects of biological water purification grid on microbial community of culture environment and intestine of the shrimp Litopenaeus vannamei. Aquac. Res. 50, 1300–1312 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J. & Oertel, W. Growth and thallus morphogenesis of Ulva mutabilis (chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48, 1433–1447 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Kessler, R. W., Weiss, A., Kuegler, S., Hermes, C. & Wichard, T. Macroalgal–bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol. Ecol. 27, 1808–1819 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Malmstrom, R. R., Kiene, R. P. & Kirchman, D. L. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 49, 597–606 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Holmström, C., Egan, S., Franks, A., McCloy, S. & Kjelleberg, S. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol. Ecol. 41, 47–58 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Holmström, C. & Kjelleberg, S. The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling 8, 147–160 (1994).

    Article 

    Google Scholar 

  • 43.

    Lachnit, T., Blümel, M., Imhoff, J. F. & Wahl, M. Specific epibacterial communities on macroalgae : Phylogeny matters more than habitat. Aquat. Biol. 5, 181–186 (2009).

    Article 

    Google Scholar 

  • 44.

    Fan, X. et al. The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera : Implications for the explosion in green tides. J. Appl. Phycol. 26, 537–544 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Van Alstyne, K. L. Seawater nitrogen concentration and light independently alter performance, growth, and resource allocation in the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura ( Chlorophyta ). Harmful Algae 78, 27–35 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Lachnit, T., Wahl, M. & Harder, T. Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling 26, 247–255 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Su, H. et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. Environ. Int. 119, 327–333 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Ekwanzala, M. D., Dewar, J. B. & Momba, M. N. B. Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly. Ecotoxicol. Environ. Saf. 197, 110612 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Numberger, D. et al. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci. Rep. 9, 1–14 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Teklehaimanot, G. Z., Genthe, B., Kamika, I. & Momba, M. N. B. Prevalence of enteropathogenic bacteria in treated effluents and receiving water bodies and their potential health risks. Sci. Total Environ. 518–519, 441–449 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Kelley, S. E. Experimental studies of the evolutionary significance of sexual reproduction. V. A field test of the sib-competition hypotheses. Evolution (N. Y). 43, 1066 (1989).

  • 52.

    Browne, L. & Karubian, J. Rare genotype advantage promotes survival and genetic diversity of a tropical palm. New Phytol. 218, 1658–1667 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    Gressler, V. et al. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 120, 585–590 (2010).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Gu, D. et al. Purification of R-phycoerythrin from Gracilaria lemaneiformis by centrifugal precipitation chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 10871088, 138–141 (2018).

  • 55.

    Su, Y. bin et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E1578–E1587 (2018).

  • 56.

    Hollants, J., Leliaert, F., De Clerck, O. & Willems, A. What we can learn from sushi: A review on seaweed-bacterial associations. FEMS Microbiol. Ecol. 83, 1–16 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    AQSIQ. Specifications for Oceanographic Survey. Part 4: Survey of Chemical Parameters in Sea Water. 16–26 (Standards Press of China, 2007).

  • 58.

    Burke, C., Kjelleberg, S. & Thomas, T. Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl. Environ. Microbiol. 75, 252–256 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Xu, Y., Le, G. & Zhang, Y. Comparison with several methods to isolate epiphytic bacteria from Gracilaria lemaneiformis (Rhodophyta). Microbiol. China 34, 123–126 (2007).

    Google Scholar 

  • 60.

    Pei, P. et al. Analysis of the bacterial community composition of the epiphytes on diseased Gracilaria lemaneiformis using PCR-DGGE fingerprinting technology. J. Fish. Sci. China 25 (2018).

  • 61.

    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9 (2014).

  • 62.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Liu, T. et al. Joining Illumina paired-end reads for classifying phylogenetic marker sequences. BMC Bioinform. 21, 1–13 (2020).

    Article 

    Google Scholar 

  • 64.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Cole, J. R. et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, 633–642 (2014).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Somerfield, P. J. Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Mar. Ecol. Prog. Ser. 372, 303–306 (2008).

    ADS 
    Article 

    Google Scholar 

  • 70.

    Higgins, M. A., Robbins, G. A., Maas, K. R. & Binkhorst, G. K. Use of bacteria community analysis to distinguish groundwater recharge sources to shallow wells. J. Environ. Qual. 49, 1530–1540 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Yang, J., Ma, L., Jiang, H., Wu, G. & Dong, H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci. Rep. 6, 6–11 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Electrifying cement with nanocarbon black

    In-stream turbines for rethinking hydropower development in the Amazon basin