in

Environmental stressors, complex interactions and marine benthic communities’ responses

  • 1.

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Article  Google Scholar 

  • 2.

    Millenium Ecosystem Assessment. Ecosystems and Human Wellbeing: Wetlands and Water. World Resources Institute, Washington, DC. https://www.millenniumassessment.org/documents/document.358.aspx.pdf (2005).

  • 3.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622. https://doi.org/10.1126/science.aad2622 (2016).

  • 4.

    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  • 6.

    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 7.

    Côté, I., Darling, E. & Brown, C. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152592. Doi: https://doi.org/10.1098/rspb.2015.2592 (2016).

  • 8.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 9.

    Séguin, A., Gravel, D. & Archambault, P. Effect of disturbance regime on Alpha and Beta diversity of rock pools. Biodivers. J. 6, 1–17 (2014).

    Google Scholar 

  • 10.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).

    Article  CAS  Google Scholar 

  • 11.

    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).

    ADS  Article  Google Scholar 

  • 12.

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    PubMed  Article  Google Scholar 

  • 13.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed  Article  Google Scholar 

  • 14.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).

    PubMed  Article  Google Scholar 

  • 16.

    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765. https://doi.org/10.1371/journal.pone.0065765 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).

    Article  Google Scholar 

  • 18.

    Kaplan, I. C., Levin, P. S., Burden, M. & Fulton, E. A. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 67, 1968–1982 (2010).

    Article  Google Scholar 

  • 19.

    Ghedini, G., Russell, B. D. & Connell, S. D. Managing local coastal stressors to reduce the ecological effects of ocean acidification and warming. Water (Switzerland) 5, 1653–1661 (2013).

    Google Scholar 

  • 20.

    Hodgson, E. E., Halpern, B. S. & Essington, T. E. Moving beyond silos in cumulative effects assessment. Front. Ecol. Evol. 7, 1–8 (2019).

    Article  Google Scholar 

  • 21.

    Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106, 1848–1852 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Power, M. Assessing the effects of environmental stressors on fish populations. Aquat. Toxicol. 39, 151–169 (1997).

    CAS  Article  Google Scholar 

  • 25.

    Hodgson, E. E., Essington, T. E. & Halpern, B. S. Density dependence governs when population responses to multiple stressors are magnified or mitigated. Ecology 98, 2673–2683 (2017).

    PubMed  Article  Google Scholar 

  • 26.

    Griffith, G. P. & Fulton, E. A. New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES J. Mar. Sci. 71, 764–774 (2014).

    Article  Google Scholar 

  • 27.

    Harvey, E., Séguin, A., Nozais, C., Archambault, P. & Gravel, D. Identify effects dominate the impacts of multiple species extinctions on the functioning of complex food webs. Ecology 94, 169–179 (2013).

    PubMed  Article  Google Scholar 

  • 28.

    Schmolke, A., Brain, R., Thorbek, P., Perkins, D. & Forbes, V. Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant Boltonia decurrens. Environ. Toxicol. Chem. 36, 480–491 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B, Biol. Sci. 368, (2013).

  • 30.

    Alsterberg, C., Sundbäck, K. & Hulth, S. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment. PLoS One 7, (2012).

  • 31.

    Rosenberg, R. Eutrophication – The future marine coastal nuisance?. Mar. Pollut. Bull. 16, 227–231 (1985).

    CAS  Article  Google Scholar 

  • 32.

    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).

    ADS  CAS  Article  Google Scholar 

  • 33.

    McGlathery, K. J., Sundbäck, K. & Anderson, I. C. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Mar. Ecol. Prog. Ser. 348, 1–18 (2007).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Attrill, M. J. & Power, M. Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar. Ecol. Prog. Ser. 203, 133–143 (2000).

    ADS  CAS  Article  Google Scholar 

  • 35.

    McLusky, D. S., Hull, S. C. & Elliott, M. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth estuary. Netherlands J. Aquat. Ecol. 27, 101–109 (1993).

    Article  Google Scholar 

  • 36.

    Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam, B. Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS ONE 6(4), e18849 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Greimel, F. et al. Hydropeaking impacts and mitigation in Riverine ecosystem management: Science for governing towards a sustainable future (ed. Schmutz, S. & Sendzimir, J.) 91–110 (Aquatic Ecology Series 8, 2018).

  • 38.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).

    ADS  Article  Google Scholar 

  • 40.

    Lotzel, H. K. & Worm, B. Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnol. Oceanogr. 47, 1734–1741 (2002).

    ADS  Article  Google Scholar 

  • 41.

    Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ. Sci. Technol. 44, 7756–7758 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 42.

    Drejou, E. et al. Biodiversity and habitat assessment of coastal benthic communities in a sub-Arctic industrial harbour area. Water J. 12, 2424. https://doi.org/10.3390/w12092424 (2020).

    Article  Google Scholar 

  • 43.

    Romero, F., Acuña, V., Font, C., Freixa, A. & Sabater, S. Effects of multiple stressors on river biofilms depend on the time scale. Sci. Rep. 9, 15810. https://doi.org/10.1038/s41598-019-52320-42 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Borja, A., Franco, J. & Pérez, V. A. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environmentls. Mar. Pollut. Bull. 40, 1100–1114 (2000).

    CAS  Article  Google Scholar 

  • 45.

    Bourget, E., Ardisson, P.-L., Lapointe, L. & Daigle, G. Environmental factors as predictors of epibenthic assemblage biomass in the St Lawrence system. Estuar. Coast. Shelf. Sci. 57, 641–652 (2003).

    ADS  CAS  Article  Google Scholar 

  • 46.

    McLusky, D.S. & Allan, D.G. Aspects of the biology of Macoma balthica (L.) from estuarine Firth of Forth. J. Molluscan Stud. 42, 31–45 (1976).

  • 47.

    Cottrell, R. S., Kenny, D. B., Hutchison, Z. L. & Last, K. S. The influence of organic material and temperature on the burial tolerance of the blue mussel, Mytilus edulis: Considerations for the management of marine aggregate dredging. PLoS ONE 11, 1. https://doi.org/10.1371/journal.pone.0147534 (2020).

    CAS  Article  Google Scholar 

  • 48.

    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. 16, 229–311 (1978).

    Google Scholar 

  • 49.

    Ratcliffe, P.J., Jones, N.V. & Walters, N.J. The survival of Macoma balthica (L.) in mobile sediments. In Feeding and Survival Strategies of Estuarine Organisms (ed. Jones, N.V & Wolff, W.J.) 91–108 (Plenum Press, 1981).

  • 50.

    Riaux-Gobin, C. & Klein, B. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis. In Handbooks of Methods in Aquatic Microbial Ecology, (ed. Kemp, P.F., Sherr, B.F., Sherr, E.B. & Cole, J.J.) 369–376 (Lewis Publishers, 1993).

  • 51.

    Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).

    ADS  Article  Google Scholar 

  • 52.

    Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).

    ADS  Article  Google Scholar 

  • 53.

    Folk, R. L. & Ward, W. C. Brazos River Bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 3–26 (1957).

    ADS  Article  Google Scholar 

  • 54.

    Galbraith, P. et al. Physical oceanographic conditions in the Gulf of St. Lawrence during 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/046, iv + 69 p. (2019).

  • 55.

    Baden, S., Boström, C., Tobiasson, S., Arponen, H. & Moksnes, P. O. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area. Limnol. Oceanogr. 55, 1435–1448 (2010).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Moksnes, P.-O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperature seagrass community. Oikos 117, 763–777 (2008).

    Article  Google Scholar 

  • 57.

    Bonsdorff, E. Establisment, growth and dynamics of a Macoma balthica (L.) population. Limnologica. 15, 403–405 (1984)

  • 58.

    Castañeda, R. A., Cvetanovska, E., Hamelin, K. M., Simard, M. A. & Ricciardi, A. Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St Lawrence River. Aquat. Invasions. 13, 379–392 (2018).

    Article  Google Scholar 

  • 59.

    Baden, S. P. & Eriksson, S. P. Role, routes and effects of manganese in crustaceans. Oceanogr. Mar. Biol. Ann. Rev. 44, 61–83 (2006).

    Google Scholar 

  • 60.

    Page, T. M., Worthington, S., Calosi, P. & Stillman, J. H. Effects of elevated pCO2 on crab survival and exoskeleton composition depend on shell function and species distribution: A comparative analysis of carapace and claw mineralogy across four porcelain crab species from different habitats. ICES J. Mar. Sci. 74, 1021–1032 (2017).

    Article  Google Scholar 

  • 61.

    Small, D., Calosi, P., White, D., Spicer, J. I. & Widdicombe, S. Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat. Biol. 10, 11–21 (2010).

    Article  Google Scholar 

  • 62.

    Marchant, H. K., Calosi, P. & Spicer, J. I. Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J. Mar. Biol. Assoc. UK 90, 1379–1384 (2010).

    Article  Google Scholar 

  • 63.

    Horne, F.R. & Tarsitano, S. The mineralization and biomechanics of the exoskeleton. In The Biology and Fisheries of the Slipper Lobster (ed. Lavalli, K.L & Spanier, E.) 183–189 (CRC Press, 2007).

  • 64.

    Tao, J., Zhou, D., Zhang, Z., Xu, X. & Tang, R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc. Natl. Acad. Sci. USA 106, 22096–22101 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 65.

    Menu-Courey, K. et al. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2. Mar. Environ. Res. 143, 111–123 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Siddon, E. C., Heintz, R. A. & Mueter, F. J. Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 94, 140–149 (2013).

  • 67.

    Anderson, M. J. Permanova: A fortran computer program for permutational multivariate analysis of variance (University of Auckland, Auckland, Department of Statistics, 2005).

    Google Scholar 

  • 68.

    Clarke, K.R & Gorley, R.N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth (2006).

  • 69.

    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Thornton, D. C. O., Dong, L. F., Underwood, G. J. C. & Nedwell, D. B. Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat. Microb. Ecol. 27, 285–300 (2002).

    Article  Google Scholar 

  • 71.

    Pinckney, J., Paerl, H. W. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).

    ADS  Article  Google Scholar 

  • 72.

    Lin, J. & Hines, A. H. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam Macoma balthica. Oikos 69, 28–36 (1994).

    Article  Google Scholar 

  • 73.

    Bougrier, S., Hawkins, A. J. S. & Héral, M. Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analyzed by flow cytometry. Aquaculture 150, 123–134 (1997).

    Article  Google Scholar 

  • 74.

    Cognie, B., Barillé, L. & Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries Coast. 24, 126–131 (2001).

    Article  Google Scholar 

  • 75.

    Camargo, J. A. & Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Davenport, J. & Redpath, K.J. Copper and the mussel Mytilus edulis (L.) in Toxins, drugs and pollutants in marine animals (ed. Bolis, L., Zadunaisky, J. & Gilles, R.) 176–189 (Springler-Verlag, 1984).

  • 77.

    Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture (ed. Blackwell Publishing) 95–96 (Wiley-Blackwell, 2003).

  • 78.

    Hauton, C. Physiological responses: Effects of salinity as a stressor to aquatic in- vertebrates. In Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications (ed. Solan, M & Whiteley, N.M.) 3–24 (Oxford University Press, 2016)

  • 79.

    Almada-Villela, P. C. The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. U.K. 64, 171–182 (1984).

  • 80.

    Kautsky, N., Johannesson, K. & Tedengren, M. Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Mar. Ecol. Prog. Ser. 59, 203–210 (1990).

  • 81.

    Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).

    Article  Google Scholar 

  • 82.

    Qiu, J., Tremblay, R. & Bourget, E. Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar. Ecol. Prog. Ser. 228, 143–152 (2002).

  • 83.

    Cederwal, H. & Elmgren, R. Biomass increase of benthic macro- fauna demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1, 287–304 (1980).

    Google Scholar 

  • 84.

    Josefson, A. B. & Rasmussen, B. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: Importance of nutrient load and residence time. Estuar. Coast. Shelf Sci. 50, 205–216 (2000).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Carmichael, R. H., Shriver, A. C. & Valiela, I. Bivalve response to estuarine eutrophication: The balance between enhanced food supply and habitat alterations. J. Shellfish Res. 31, 1–11 (2012).

    Article  Google Scholar 

  • 86.

    Lin, J. & Hines, A. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam. Macoma balthica. Oiko 69, 28–36 (1994).

    Article  Google Scholar 

  • 87.

    Findlay, H. S. et al. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar. Biol. Res. 7, 565–575 (2011).

    Article  Google Scholar 

  • 88.

    Ries, J.B., Cohen. A.L. & McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131−1134 (2009).

  • 89.

    Michaelidis, B., Ouzounis, C., Paleras, A. & Pörtner, H. O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).

    ADS  Article  Google Scholar 

  • 90.

    Whiteley, N. M., Scott, J. L., Breeze, S. J. & McCann, L. Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204, 1003–1011 (2001).

    CAS  PubMed  Google Scholar 

  • 91.

    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

    PubMed  Article  Google Scholar 

  • 92.

    Withey, J. C. et al. Maximizing return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    The catalyzing potential of J-WAFS seed grants