A total number of 3189 lakes have been spatially delimited and analyzed. The delimitation and spatial distribution of the lakes revealed their uneven distribution within the Romanian territory. The largest share of lakes, (41.5%) are distributed within the low plains, located mainly in the South and West of the country. About 36% of the identified lakes are located in the hilly and plateau units, while 11.5% are in the mountain areas and about 11% in the Danube Delta.
The assessment of the state of degradation of the lentic ecosystems by the GIS based extended WRASTIC model revealed that more than half (57%) of the analyzed lakes are classified as semi-degraded. These are mostly distributed in the plains (46%) and in the plateau areas (33%) (Fig. 1).
Distribution of lentic ecosystems in Romania according to the major topography units (this map was created with Arc GIS 10.5 software).
The lakes classified as degraded represent 31% of the total, mostly located in the plains (48%) and plateau (36.5%), the least part being located in the Danube Delta (about 0.5%). The lakes in the natural state represent a small share, respectively about 13%, generally located in the Danube Delta (72%) and the mountain areas (21%) (Supplementary Table 1).
Altitudinal stages represent a restrictive factor in the spatial distribution of lakes throughout the country. Most lakes, about 76%, are located at low altitudes, respectively below an altitude of 200 m. The number of lakes identified at higher altitudes, over 800 m, is reduced, representing about 8% of the total number of analyzed lakes (Fig. 2).
Distribution of lentic ecosystems on the Romanian territory according to the altitudinal stages (this map was created with Arc GIS 10.5 software).
Regarding the natural lakes, the largest part of them is represented by natural lakes located at altitudes less than 200 m (about 83%). In the same time, about 75% of the lakes evaluated as degraded are located at altitudes less than 200 m.
About 98.5% of the 412 lakes in the natural state are located, partially or totally, in protected areas of national or international interest, such as national and natural parks, Ramsar sites, Biosphere reserves, UNESCO World heritage sites and Natura 2000 sites (Sites of Community Importance and Special Protection Areas) (Fig. 3.).
Distribution of lake categories according to the state of degradation and the relationship with protected areas of national and international interest in Romania (this map was created with Arc GIS 10.5 software).
The percentage of semi-degraded and degraded lakes located in protected areas is lower (about 38% of the semi-degraded lakes, respectively 32.5% of the degraded) (Supplementary Table 2). The other lakes are not included in protected areas and do not own any special protection regime.
As a result of applying the methodology based on WRASTIC-HI index, only 9 lakes out of the total of 412 natural lakes are associated with industrial activities and different forms of small-scale exploitation within their hydrographic basins, while the rest of 98% do not present such activities.
The hydrographic basins of the natural lakes do not cover very large areas, 83% of them stretching on area of less than 39 square km, each. In about 97% of cases, agricultural activities in the reception basin represent below 20% of the economic activity, the irrigation percentage being low and the degree of vegetation cover being high.
Considering the degraded lakes, for a large share of them (87%) of them industrial and exploitation activities, such as mines, quarries or dumps are present within the river basin. A high percentage, about 98%, include treatment plants with different types of processing (primary or secondary) within the reception hydrographic basins. For 96% of the degraded lakes, agricultural activities and permanent irrigation activities are covering over 40% of the related basins area.
Spearman correlation showed that there is a good correlation between the degradation state and several components of the WRASTIC-HI index such as Industrial activities, Recreational activities, Wastewater, Ways of transportation, Irrigation and Agricultural activities (Table 1).
Between the state of degradation, on the one hand, and the permeability of the soil, the slope and the vegetation cover of the water lily, on the other hand, the analysis showed that there is no correlation. However, there is a weak correlation between the degradation state and Exposition (Table 2).
The computational results indicate a negative correlation between the state of degradation, the percentage of the basin included in the protected areas and the percentage of the basin included in the protected areas of the Natura 2000 network (the probability level of 0.0001, being less than 0.05, indicates that there is a statistical significance) (Table 3).
The statistical analysis performed shows that there is no correlation between the Degradation State and Altitude, while between the Degradation state and the Relief units there is a weak negative correlation.
The results indicate also a direct correlation between the state of degradation, the number of inhabitants without access to the sewerage and the population density in the lake basin, the correlation coefficient being 0.024, and respectively 0.235.
It is important to study of the state of the lentic ecosystems both regarding the pressures coming from human activity and the ones originating from climatic changes or other natural phenomena. However, the development of an assessment model that can be applied to all aquatic ecosystems, and lentic ecosystem in particular, is a challenge, because available data are not homogenous, each region and lake having its own particularities. Choosing the proper set of indicators that can be useful for the overall characterization of the quality of lentic ecosystems, will lead to a coherent implementation of biodiversity strategies.
To the best of our knowledge, this is the first evaluation of the quality of lentic ecosystems in Romania by multi-criteria analysis. This assessment is part of a national project for implementation of a national policy on biodiversity, as a response to EU requirements.
Over the time, the scientific literature identified various methodologies for the evaluation of the quality of water resources. Such methods include DRASTIC20,21, and methods derived from DRASTIC22,23,24. Other authors used digital surface model (DSM) and a point dataset as the sources of observation and target locations for Geospatial analysis of lake scenery25.
For integrative water quality management, Feng et al.26, proposed a model-based method. Their method integrated three indices derived from three models for assessment of the risk due to nutrient dynamics26.
A multi-attribute value theory to formulate an integrated water quality assessment method was used by Schuwirth27, for aggregation over multiple pollutants and time.
Another category of indexes that are used in evaluating the state of degradation of lacustrine ecosystems aim at analysis of the presence of degradation sources in supplying basin. For example, Mirzaei et al19 calculated WRASTIC index for assessment of pollution risk, respectively degradation sources, from the watershed that feeds a water body. Potential pollutant load index (PPL) was employed by Romanelli et al18 for analyzing the presence and intensity of potential pollution sources from the drainage area of several lakes, with the purpose of establishing degradation classes of the water body. In the same study, the Lake Vulnerability Index highlighted the capacity of the water body to handle the impact generated by degradation sources, taking into account parameters like slope, soil permeability or aspect of slopes18.
According to the characteristics of the study area, modified versions of WRASTIC index are to be found in the literature, and were implemented by using additional criteria or eliminating some parameters28.
Rahimi et al29 used WRASTIC Index for evaluation of wetland water quality. Their results revealed that the activity in adjacent wetland areas exert a large impact on wetland integrity29.
In another study, aquatic ecosystems pollution risk was evaluated by a combined Fuzzy-WRASTIC method. The model was validated by comparison with samples collected from the case study area. The authors concluded that the method has advantages over other methods, as it includes a wide range of drivers and parameters that influence the water quality. The results obtained pointed that areas with high contamination risk are due to the unbalanced arrangement and compact of land uses in the neighborhood of the aquatic ecosystems30. Using analytical survey and experimental studies Mirzaei et al19 investigated the pollution risk for Zayandehrud river, Iran. Agricultural, industrial activities and population centers were the main causes of pollution in the study case area19.
In Romania, the evaluation of aquatic ecosystems was performed by various researchers, either for a specific area or for a hydrographic basin.
For example, Rosca et al31 studied the impact of anthropogenic activity on water quality parameters of glacial lakes from Rodnei mountains. The factors taken in consideration were tourism and livestock. The pollution index was calculated based on three indices, targeted on heavy metal influences, namely, the heavy metal pollution index (indicating the quality of waters related to the heavy metals content), the heavy metal evaluation index (assessment of the quality of water with respect to heavy metals) and the degree of contamination (used to quantify the contamination level with the heavy metal). The physico-chemical parameters pointed a good quality of the study case lakes. The conclusion of the authors was that minor anthropic alteration and a low anthropogenic impact is exerted in these areas. The only anthropic pressure on the aquatic systems in Rodnei Mountains was reported as being exerted by grazing activities31.
Another paper described the assessment of actual water quality and sedimentological conditions of the Corbu lake, Western Black Sea coast. The ecological status of this lake was found to be from good to weak classes for nitrites, ammonium and phosphates, moderate for sulphates and weak for detergents32.
The impact of human interventions and climate changes on the hydro-chemical composition of Techirghiol lake (Romania) was recently investigated by Maftei et al33. The study identified a degradation of this ecosystem between 1970–1998, due to extensive irrigation in the lake region, followed by a major decrease of the lake’s salinity33. Physico-chemical water quality parameters of lake Brăneşti was investigated by Benciu et al34. The water quality parameters for the last 50 years were correlated with the anthropogenic pressure in the region. Analysis of water and soil samples in the vicinity of this lake, revealed that parameters were within legal norms for both water and soil34.
Another study presented by Dumitran et al35 proposed an eutrophication model for describing the ecological behavior of a eutrophic lake. The physical model was mathematically transposed to a set of equations for analysing the selected parameters linked to eutrophication state. The resulted model showed a good correlation with the measured data35.
It is to be noted that most of the available literature is based on the assessment of the water quality, by measurements of physico-chemical parameters, and calculation of pollution indexes. To our knowledge no extensive studies involved the study of the lentic ecosystems with respect to vulnerability and risk of pollution by using multicriterial analysis.
Generally, the precautionary approach is applied by identifying and analyzing the categories of drivers that influence the degradation of lentic ecosystems, especially in the protected areas36,37,38. Three main categories of activities that generate environmental issues have been identified within protected areas included within the Natura 2000 Sites as follows: (a) agricultural activities and forestry practice; (b) sectoral activities (industrial, commercial and tourism sectors); (c) conservation policies (management of protected areas, protection of different species, etc.)39. A cross-sectoral approach is needed in order to resolve medium-term environmental conflicts, thus being be able to extend the assessment towards various categories of protected areas and generating efficient policies for the management of resources40,41.
Identifying and analyzing the categories of conflicts that may be associated with lentic ecosystems provide the possibility of an efficient ecosystem management22,23.
The lakes from this case study comprise both natural lakes (glacial, karst, karst-saline, ponds, lagoons), as well as ponds accumulation lakes, with an important role in ensuring the resources of water for the population and economic activities, as well as the development and maintenance of habitats and species of community interest (birds, amphibians, reptiles, fish, etc.).
Most of the lakes resulting from the analysis as being degraded and semi-degraded are located in the plains, at low altitudes, within areas covered with agricultural lands, industrial facilities and dense transportation routes.
The lentic ecosystems characterized as being in a natural state resulting from the proposed methodology are mainly distributed in the high mountain areas and in the Danube Delta area. Thus, altitude, fragmentation of the relief and accessibility are favorable factors regarding the natural state of water bodies, including lentic ecosystems. The high number of lakes characterized as degraded or semi-degraded compared to that of natural lakes is justified by the existence of a small number of lakes located at high altitudes, over 800 m.
It is to be taken into account that the degradation state classification is directly influenced by the data used in defining WRASTIC indicators, being generally derived data, which may explain the limitation of the method from this point of view.
The lack of correlation or poor correlation resulting from the statistical analysis between the degradation state and the indicators defining the HI index (component part of the WRASTIC-HI index), respectively the permeability, the exposure and the slope, highlight the insignificant role of these parameters in determining the state of lake degradation. However, the processes of erosion and sediment transport on the surface of the basins and their accumulation in lakes can influence the water quality of the lakes, their clogging, their functionality and the services offered, which are important factors in improving the management of the analyzed lakes42.
The status of protected areas offers a high degree of protection by diminishing the anthropic activities and the negative effects on the lakes, being recommended that all economic activities be located outside these protected areas43 the basins being vulnerable to human activities. This aspect is also highlighted by the correlation between the state of degradation obtained and the percentage of the hydrographic basin existing in different categories of protected areas, between which there is a good correlation, as well as by the high number of natural lakes that are included in protected areas (~ 98%), located especially in the Danube Delta Biosphere Reserve.
The local public administrations are directly interested in the management and protection of lentic ecosystems, many lakes being included in different categories of protected areas. Increasing the number of lakes in the natural state involves identifying degraded or semi-degraded lentic ecosystems outside protected areas and carrying out ecological reconstruction activities or diminishing agricultural and industrial activities in their vicinity.
The state of the lakes may also depend on the dynamics of the hydrophilic and hydrophilic vegetation, respectively on the hedge with vegetation cover of the water lily. In our study, the statistical analysis showed that there is no correlation between the state of degradation and the Coverage with vegetation of the water lily. Thus, in this case, the state of degradation of the lentic ecosystems is not influenced by this parameter, although, in some cases, remote sensing analysis revealed the presence of excess algae and aquatic plants in both natural and semi-degraded lakes44.
The lakes located in the low plain areas are also affected by the eutrophication process, amplified by the reduced depth (which ensures the rapid development of algae during the summer), the contribution of nutrients due to the agricultural activities in the vicinity and the development of recreational activities.
Source: Ecology - nature.com