in

Evolutionary assembly of flowering plants into sky islands

  • 1.

    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).

    Article 

    Google Scholar 

  • 2.

    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Article 

    Google Scholar 

  • 4.

    Münkemüller, T., Boucher, F., Thuiller, W. & Lavergne, S. Common conceptual and methodological pitfalls in the analysis of phylogenetic niche conservatism. Funct. Ecol. 29, 627–639 (2015).

    Article 

    Google Scholar 

  • 5.

    Behrensmeyer, A. K. et al. (eds) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. of Chicago Press, 1992).

  • 6.

    Graham, A. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico (Oxford Univ. Press, 1999).

  • 7.

    Latham, R. E. & Ricklefs, R. E. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 294–314 (Univ. of Chicago Press, 1993).

  • 8.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    Article 

    Google Scholar 

  • 10.

    Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).

    Article 

    Google Scholar 

  • 11.

    Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).

    Article 

    Google Scholar 

  • 12.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).

    Article 

    Google Scholar 

  • 13.

    Pulsipher, L. M. & Pulsipher, A. World Regional Geography: Global Patterns, Local Lives 6th edn (W.H. Freeman, 2014).

  • 14.

    Culmsee, H. & Leuschner, C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 40, 1997–2010 (2013).

    Article 

    Google Scholar 

  • 15.

    González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).

    Article 

    Google Scholar 

  • 16.

    Qian, H., Zhang, Y., Zhang, J. & Wang, X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 22, 1183–1191 (2013).

    Article 

    Google Scholar 

  • 17.

    Qian, H., Field, R., Zhang, J., Zhang, J. & Chen, S. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603–615 (2016).

    Article 

    Google Scholar 

  • 18.

    Qian, H. & Ricklefs, R. E. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol. 31, 738–741 (2016).

    Article 

    Google Scholar 

  • 19.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 

    Google Scholar 

  • 20.

    Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).

  • 21.

    Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913–920 (2016).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).

    Article 

    Google Scholar 

  • 23.

    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2003).

  • 24.

    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    Article 

    Google Scholar 

  • 25.

    Gallien, L., Zurell, D. & Zimmermann, N. E. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol. Evol. 8, 2171–2181 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).

    Article 

    Google Scholar 

  • 27.

    Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Steinbauer et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 

    Google Scholar 

  • 29.

    Takhtajan, A. L. Flowering Plants: Origin and Dispersal (Oliver & Boyd, 1969).

  • 30.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    Article 

    Google Scholar 

  • 31.

    Heald, W. Sky Island (D. Van Nostrand Co., Inc., 1967).

  • 32.

    Marx, H. E. et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 44, 2618–2630 (2017).

    Article 

    Google Scholar 

  • 33.

    Humboldt, A. V. & Bonpland, A. Essai sur la Géographie des Plantes: Accompagné d’un Tableau Physique des Régions Équinoxiales (Arno Press, 1977).

  • 34.

    Qian, H., White, P. S., Klinka, K. & Chourmouzis, C. Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. J. Veg. Sci. 10, 869–882 (1999).

    Article 

    Google Scholar 

  • 35.

    Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).

    Article 

    Google Scholar 

  • 36.

    Chapin, F. S. III & Körner, C. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 313–320 (Springer, 1995).

  • 37.

    Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article 

    Google Scholar 

  • 38.

    Webb, C., Ackerly, D. & Kembel, S. Phylocom: Software for the analysis of phylogenetic community structure and character evolution, with Phylomatic. R package version 4.2 (2011).

  • 39.

    Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. https://doi.org/10.1016/j.pld.2020.11.005 (2021).

  • 40.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar 

  • 41.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar 

  • 42.

    Tsirogiannis, C., Sandel, B. & Cheliotis, D. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30–43 (2012).

    Article 

    Google Scholar 

  • 43.

    Tsirogiannis, C., Sandel, B. & Kalvisa, A. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187–203 (2014).

    Article 

    Google Scholar 

  • 44.

    Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage