Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).
Google Scholar
Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014).
Google Scholar
Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).
Google Scholar
Arleevskaya, M. I., Aminov, R., Brooks, W. H., Manukyan, G. & Renaudineau, Y. Shaping of human immune system and metabolic processes by viruses and microorganisms. Front Microbiol. 10, 816 (2019).
Google Scholar
Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).
Google Scholar
Rook, G. A., Raison, C. L. & Lowry, C. A. Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease 2014 319–356 (Springer, 2014).
Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. 110, 18360–18367 (2013).
Google Scholar
Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. In Seminars in Immunopathology, Voxl 41, No 2 165–175 (Springer, 2019).
Prescott, S. L. A butterfly flaps its wings: Extinction of biological experience and the origins of allergy. Ann. Allergy Asthma Immunol. 20, 20 (2020).
Prescott, S. L. et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).
Google Scholar
Austvoll, C. T., Gallo, V. & Montag, D. Health impact of the Anthropocene: The complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob. Health Epidemiol. Genom. 5, 20 (2020).
Haahtela, T. A biodiversity hypothesis. Allergy 74, 1445–1456 (2019).
Google Scholar
Haahtela, T. et al. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 6, 1–8 (2013).
Google Scholar
Donovan, G., Gatziolis, D., Mannetje, A. T., Weinkove, R., Fyfe, C., & Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Available at SSRN 3559635 (2020).
Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signalling and gut microbiota. Cancer Lett. 469, 456–467 (2020).
Google Scholar
Du, Y. et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 177, 1754–1772 (2020).
Google Scholar
Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 20, 20 (2020).
Google Scholar
Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 1–4 (2017).
Google Scholar
Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 10, 1572 (2019).
Google Scholar
Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urban airborne microbial communities are less abundant and less diverse than rural counterparts-but what does that mean for our health? A systematic review. Sci. Total Environ. 20, 140337 (2020).
Google Scholar
Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).
Google Scholar
Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).
Google Scholar
Lymperopoulou, D. S., Adams, R. I. & Lindow, S. E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 82, 3822–3833 (2016).
Google Scholar
Abdelfattah, A. et al. Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci. 10, 922 (2019).
Google Scholar
Stewart, J. et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total Environ. 1, 138353 (2020).
Google Scholar
Mhuireach, G. Á., Betancourt-Román, C. M., Green, J. L. & Johnson, B. R. Spatiotemporal controls on the urban aerobiome. Front Ecol. Evol. 7, 43 (2019).
Google Scholar
Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).
Google Scholar
Robinson, J. M. & Breed, M. F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 10, 9 (2019).
Google Scholar
Callaghan, A. et al. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 18, 1–5 (2020).
Google Scholar
Cameron, R. W. et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans?. Urban Ecosyst. 23, 301–317 (2020).
Google Scholar
Robinson, J. M., Jorgensen, A., Cameron, R. & Brindley, P. Let nature be thy medicine: A socioecological exploration of green prescribing in the UK. Int. J. Environ. Res. Public Health 17, 3460 (2020).
Google Scholar
Yeh, C. T., Cheng, Y. Y. & Liu, T. Y. Spatial characteristics of urban green spaces and human health: An exploratory analysis of canonical correlation. Int. J. Environ. Res. Public Health 17, 3227 (2020).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990).
Google Scholar
Franconieri, F. et al. Rothia spp. infective endocarditis: A systematic literature review. Méd. Maladies Infect. 35, 1–8 (2020).
Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 1–12 (2020).
Robinson, J. M. & Jorgensen, A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. People Nat. 2, 339–349 (2020).
Google Scholar
Baruch, Z. et al. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 47, 100939 (2020).
Google Scholar
Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 20, 20 (2020).
Honeker, L. K. et al. Gut microbiota from amish but not hutterite children protect germ-free mice from experimental asthma. In D92. The Microbiome and Lung Disease A7022–A7022 (American Thoracic Society, 2019).
Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 2578 (2020).
Google Scholar
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2, 6 (2017).
Google Scholar
Chen, J., Jin, S. & Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and night-time urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 89, 102060 (2020).
Google Scholar
Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front Ecol. Evol. 7, 91 (2019).
Google Scholar
Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 20, 20 (2020).
Astell-Burt, T. & Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 10, 100497 (2020).
Google Scholar
Woo, J. & Lee, C. J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120 (2020).
Google Scholar
Ross, S. et al. i-Tree eco analysis of landscape vegetation on remediated areas of oak ridge national laboratory. Open J. Forest. 10, 412 (2020).
Google Scholar
Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).
Google Scholar
Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol. 20, 20 (2020).
Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 9, 84 (2018).
Google Scholar
Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 20, 1–10 (2020).
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).
Google Scholar
May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).
Google Scholar
JNCC. 2013. Handbook for Phase 1 Habitat Surveys. https://data.jncc.gov.uk/data/9578d07b-e018-4c66-9c1b-47110f14df2a/Handbook-Phase1-HabitatSurvey-Revised-2016.pdf. Accessed 28 Sep 2020.
Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 02527–02614 (2015).
Google Scholar
Mbareche, H., Veillette, M., Pilote, J., Létourneau, V. & Duchaine, C. Bioaerosols play a major role in the nasopharyngeal microbiota content in agricultural environment. Int. J. Environ. Res. Public Health 16, 1375 (2019).
Google Scholar
Dettwyler, K. A. A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In Breastfeeding 39–74 (Routledge, 2017).
Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6, 1–3 (2016).
Google Scholar
Milani, C. et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 00036–00117 (2017).
Google Scholar
RCPCH. Growth Charts. 2020. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years. Accessed on 21 Jan 2020.
Bae, S., Lyons, C. & Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X. 2, 100026 (2019).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217 (2013).
Google Scholar
Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 9, 107 (2019).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224 (2017).
Google Scholar
Wickham, H., & Wickham, MH. . The ggplot package. (2007).
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., & Wagner, E. The vegan package in R. Online. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 20 Sep 2020.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Revel, W. The Psych R Package. 2020. https://cran.r-project.org/web/pakages/psych/psych.pdf. Accessed on 20 Sep 2020.
Canty, A, & Ripley, B. The Boot R Package. 2020. https://cran.r-project.org/web/packages/boot/boot.pdf. Accessed on 20 Sep 2020.
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 9, 1002687 (2012).
Google Scholar
Csárdi, G. The igraph Package in R. Online. 2020. https://cran.r-project.org/web/packages/igraph/igraph.pdf. Accessed on 10 Aug 20.
Cusack, L., Larkin, A., Carozza, S. E. & Hystad, P. Associations between multiple green space measures and birth weight across two US cities. Health Place 47, 36–43 (2017).
Google Scholar
Klompmaker, J. O. et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 160, 531–540 (2018).
Google Scholar
Lee, J. Y. et al. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 15, 102 (2018).
Google Scholar
i-Tree Canopy. i-Tree Canopy. 2020. https://canopy.itreetools.org/. Accessed on 15 May 2020.
Richardson, J. J. & Moskal, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forest. Urban Green. 13, 152–157 (2014).
Google Scholar
Soltani, A. & Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front Arch. Res. 6, 529–538 (2017).
Source: Ecology - nature.com