in

Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees

  • 1.

    Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87, 87–97. https://doi.org/10.1007/s00253-010-2573-8 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108, 662–667. https://doi.org/10.1073/pnas.1014743108 (2011).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).

    Article 

    Google Scholar 

  • 5.

    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Vilcinskas, A. Pathogens associated with invasive or introduced insects threaten the health and diversity of native species. Curr. Opin. Insect. Sci. 33, 43–48. https://doi.org/10.1016/j.cois.2019.03.004 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592. https://doi.org/10.1371/journal.pone.0103592 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Genersch, E. et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352. https://doi.org/10.1051/apido/2010014 (2010).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Meixner, M. D. & Le Conte, Y. A current perspective on honey bee health. Apidologie 47, 273–275. https://doi.org/10.1007/s13592-016-0449-3 (2016).

    Article 

    Google Scholar 

  • 10.

    Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Retschnig, G. et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ. Microbiol. 17, 4322–4331. https://doi.org/10.1111/1462-2920.12825 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Rolke, D., Fuchs, S., Grünewald, B., Gao, Z. & Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: Effects on honey bees (Apis mellifera). Ecotoxicology 25, 1648–1665. https://doi.org/10.1007/s10646-016-1725-8 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Siede, R. et al. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. Pest. Manag. Sci. 73, 1334–1344. https://doi.org/10.1002/ps.4547 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Odemer, R., Nilles, L., Linder, N. & Rosenkranz, P. Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees. Ecotoxicology 27, 527–538. https://doi.org/10.1007/s10646-018-1925-5 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Han, P., Niu, C. Y., Lei, C. L., Cui, J. J. & Desneux, N. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19, 1612–1619. https://doi.org/10.1007/s10646-010-0546-4 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350. https://doi.org/10.1126/science.1215039 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Decourtye, A. et al. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Physiol. 78, 83–92. https://doi.org/10.1016/j.pestbp.2003.10.001 (2004).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Bartling, M. T., Vilcinskas, A. & Lee, K. Z. Sub-lethal doses of clothianidin inhibit the conditioning and biosensory abilities of the western honeybee Apis mellifera. Insects https://doi.org/10.3390/insects10100340 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Yang, E. C., Chang, H. C., Wu, W. Y. & Chen, Y. W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE 7, e49472. https://doi.org/10.1371/journal.pone.0049472 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Aufauvre, J. et al. Parasite-insecticide interactions: A case study of Nosema ceranae and fipronil synergy on honeybee. Sci. Rep. 2, 326. https://doi.org/10.1038/srep00326 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Pettis, J. S., vanEngelsdorp, D., Johnson, J. & Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99, 153–158. https://doi.org/10.1007/s00114-011-0881-1 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Brochu, K. K. et al. Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Sci. Rep. 10, 3112. https://doi.org/10.1038/s41598-020-58274-2 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83. https://doi.org/10.1186/s13059-015-0628-y (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984. https://doi.org/10.1098/rsbl.2015.0984 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Berenbaum, M. R. & Johnson, R. M. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 10, 51–58. https://doi.org/10.1016/j.cois.2015.03.005 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Müller, U., Vogel, P., Alber, G. & Schaub, G. A. The innate immune system of mammals and insects. Contrib. Microbiol. 15, 21–44. https://doi.org/10.1159/000135684 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Wilmes, M., Cammue, B. P., Sahl, H. G. & Thevissen, K. Antibiotic activities of host defense peptides: More to it than lipid bilayer perturbation. Nat. Prod. Rep. 28, 1350–1358. https://doi.org/10.1039/c1np00022e (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Wu, Q., Patocka, J. & Kuca, K. Insect antimicrobial peptides: A mini review. Toxins https://doi.org/10.3390/toxins10110461 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Rahnamaeian, M. et al. Insect antimicrobial peptides show potentiating functional interactions against gram-negative bacteria. Proc. Biol. Sci. 282, 20150293. https://doi.org/10.1098/rspb.2015.0293 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Rivero, A. Nitric oxide: An antiparasitic molecule of invertebrates. Trends Parasitol. 22, 219–225. https://doi.org/10.1016/j.pt.2006.02.014 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Wink, D. A. & Mitchell, J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25, 434–456. https://doi.org/10.1016/s0891-5849(98)00092-6 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Gebicka, L. & Didik, J. Catalytic scavenging of peroxynitrite by catalase. J. Inorg. Biochem. 103, 1375–1379. https://doi.org/10.1016/j.jinorgbio.2009.07.011 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Brunelli, L., Yermilov, V. & Beckman, J. S. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic. Biol. Med. 30, 709–714. https://doi.org/10.1016/s0891-5849(00)00512-8 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Brunelli, L., Crow, J. P. & Beckman, J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch. Biochem. Biophys. 316, 327–334. https://doi.org/10.1006/abbi.1995.1044 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Wells, P. G. et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab. Dispos. 32, 281–290. https://doi.org/10.1124/dmd.32.3.281 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Schmid, M. R., Brockmann, A., Pirk, C. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Wilson-Rich, N., Dres, S. T. & Starks, P. T. The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 54, 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Bull, J. C. et al. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathog 8, e1003083. https://doi.org/10.1371/journal.ppat.1003083 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Suazo, A., Torto, B., Teal, P. E. A. & Tumlinson, J. H. Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehive-produced volatiles. Apidologie 34, 525–533. https://doi.org/10.1051/apido:2003043 (2003).

    Article 

    Google Scholar 

  • 46.

    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Schott, M. et al. Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production. Sci. Rep. 11, 62. https://doi.org/10.1038/s41598-020-79660-w (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Crossthwaite, A. J. et al. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. J. Pestic. Sci. 42, 67–83. https://doi.org/10.1584/jpestics.D17-019 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard Mater. 389, 121818. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Vidau, C. et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 6, e21550. https://doi.org/10.1371/journal.pone.0021550 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Dickel, F., Munch, D., Amdam, G. V., Mappes, J. & Freitak, D. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE 13, e0191256. https://doi.org/10.1371/journal.pone.0191256 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7. https://doi.org/10.1016/j.arr.2007.08.007 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297. https://doi.org/10.1002/ps.2780390407 (1993).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Neagu, A. et al. Expression signature of some immunity genes triggered in Apis mellifera carpatica model by Pseudomonas entomophila experimental infection. Roum. Arch. Microbiol. Immunol. 18, 18–24 (2016).

    Google Scholar 

  • 55.

    Bogdan, C., Rollinghoff, M. & Diefenbach, A. The role of nitric oxide in innate immunity. Immunol. Rev. 173, 17–26. https://doi.org/10.1034/j.1600-065x.2000.917307.x (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    DeGrandi-Hoffman, G. & Chen, Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 10, 170–176. https://doi.org/10.1016/j.cois.2015.05.007 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Zhao, J. Interplay among nitric oxide and reactive oxygen species: A complex network determining cell survival or death. Plant Signal Behav. 2, 544–547. https://doi.org/10.4161/psb.2.6.4802 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Sadekuzzaman, M., Stanley, D. & Kim, Y. Nitric Oxide mediates insect cellular immunity via Phospholipase A2 activation. J. Innate Immun. 10, 70–81. https://doi.org/10.1159/000481524 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Nappi, A. J., Vass, E., Frey, F. & Carton, Y. Nitric oxide involvement in Drosophila immunity. Nitric Oxide 4, 423–430. https://doi.org/10.1006/niox.2000.0294 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Kim, S. H. & Lee, W. J. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions. Front. Cell. Infect. Microbiol. 3, 116. https://doi.org/10.3389/fcimb.2013.00116 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850. https://doi.org/10.1126/science.1117311 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. mBio https://doi.org/10.1128/mBio.01395-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Ozcan, A. & Ogun, M. Biochemistry of reactive oxygen and nitrogen species. Basic Princ. Clin. Signif. Oxid. Stress https://doi.org/10.5772/61193 (2015).

    Article 

    Google Scholar 

  • 64.

    Sadekuzzaman, M. & Kim, Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS ONE 13, e0193282. https://doi.org/10.1371/journal.pone.0193282 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Foley, E. & O’Farrell, P. H. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev. 17, 115–125. https://doi.org/10.1101/gad.1018503 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H. & Wang, D. L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 21, 3. https://doi.org/10.1186/1423-0127-21-3 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Lee, K. A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811. https://doi.org/10.1016/j.cell.2013.04.009 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44, 575–585. https://doi.org/10.1007/s13592-013-0207-8 (2013).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Negri, P. et al. Apis mellifera hemocytes generate increased amounts of nitric oxide in response to wounding/encapsulation. Apidologie 45, 610–617. https://doi.org/10.1007/s13592-014-0279-0 (2014).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Mehta, S. K. & Gowder, S. J. T. Members of antioxidant machinery and their functions. IntechOpen. https://doi.org/10.5772/61884 (2015).

    Article 

    Google Scholar 

  • 71.

    Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: A success story. Genome. Biol. https://doi.org/10.1186/gb-2000-1-6-reviews3003 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Anzenbacher, P. & Anzenbacherova, E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol. Life Sci. 58, 737–747. https://doi.org/10.1007/pl00000897 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    Manjon, C. et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28, 1137–1143. https://doi.org/10.1016/j.cub.2018.02.045 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Thimmegowda, G. G. et al. A field-based quantitative analysis of sublethal effects of air pollution on pollinators. Proc. Natl. Acad. Sci. U S A 117, 20653–20661. https://doi.org/10.1073/pnas.2009074117 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Zheng, L. et al. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Front. Plant Sci. 6, 678. https://doi.org/10.3389/fpls.2015.00678 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Jiang, J., Shi, Y., Yu, R., Chen, L. & Zhao, X. Biological response of zebrafish after short-term exposure to azoxystrobin. Chemosphere 202, 56–64. https://doi.org/10.1016/j.chemosphere.2018.03.055 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 77.

    Rodrigues, N. R. et al. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic. Biol. Med. 120, 395–406. https://doi.org/10.1016/j.freeradbiomed.2018.04.549 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Brandt, A. et al. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci. Rep. 10, 4670. https://doi.org/10.1038/s41598-020-61445-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 81.

    Schlüns, H. & Crozier, R. H. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol. Biol. 16, 753–759. https://doi.org/10.1111/j.1365-2583.2007.00768.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • 82.

    Carreck, N. L. & Ratnieks, F. L. W. The dose makes the poison: Have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?. J. Apic. Res. 53, 607–614. https://doi.org/10.3896/ibra.1.53.5.08 (2015).

    Article 

    Google Scholar 

  • 83.

    Schott, M. et al. Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Sci. Rep. 7, 6288. https://doi.org/10.1038/s41598-017-06259-z (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE 14, e0225743. https://doi.org/10.1371/journal.pone.0225743 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Han, J. et al. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. Mar. Pollut. Bull. 124, 953–961. https://doi.org/10.1016/j.marpolbul.2016.09.048 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 86.

    Regoli, F. et al. Oxidative stress in ecotoxicology: From the analysis of individual antioxidants to a more integrated approach. Mar. Environ. Res. 54, 419–423. https://doi.org/10.1016/s0141-1136(02)00146-0 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 87.

    Sheehan, G., Farrell, G. & Kavanagh, K. Immune priming: The secret weapon of the insect world. Virulence 11, 238–246. https://doi.org/10.1080/21505594.2020.1731137 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Therneau, T. A Package for Survival Analysis in R. R package version 3.2–7. (2020).


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water