in

Extreme philopatry and genetic diversification at unprecedented scales in a seabird

  • 1.

    Rodríguez, A. et al. Future directions in conservation research on petrels and shearwaters. Front. Mar. Sci. 6, 94 (2019).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Thomson, S. A. et al. Taxonomy based on science is necessary for global conservation. PLoS Biol. 16, e2005075 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16(9), 1765–1785 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Lombal, A. J., O’Dwyer, J. E., Friesen, V. L., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among population in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. 95(3), 625–651 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Friesen, V. L. Speciation in seabirds: why are there so many species…and why aren’t there more?. J. Ornithol. 156, 27–39 (2015).

    Article 

    Google Scholar 

  • 6.

    Morris-Pocock, J. A., Steeves, T. E., Estela, F. A., Anderson, D. J. & Friesen, V. L. Comparative phylogeography of brown (Sula leucogaster) and red-footed boobies (Sula sula): the influence of physical barriers and habitat preference on gene flow in pelagic seabirds. Mol. Phylogenet. Evol. 54(3), 883–896 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Morris-Pocock, J. A., Anderson, D. J. & Friesen, V. L. Biological barriers to dispersal and rare gene flow shape population genetic structure in red-footed boobies (Sula sula). J. Biogeogr. 43(11), 2125–2135 (2016).

    Article 

    Google Scholar 

  • 8.

    Nuss, A., Carlos, C. J., Moreno, I. B. & Fagundes, N. J. R. Population genetic structure of the Magnificent Frigatebird Fregata magnificens (Aces, Suliformes) breeding colonies in the western Atlantic Ocean. PLoS ONE 11, e0149834 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Friesen, V. L., González, J. A. & Cruz-Delgado, F. Population genetic structure and conservation of the Galápagos Petrel (Pterodroma phaeopygia). Conserv. Genet. 7, 105–115 (2006).

    Article 

    Google Scholar 

  • 10.

    Frugone, M. J. et al. Contrasting phylogeographic patterns among Eudyptes penguins around the Southern Ocean. Sci. Rep. 8, 17481 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv. Int. 22(1), 1–34 (2012).

    Article 

    Google Scholar 

  • 12.

    Montevecchi, W. A. Interactions between fisheries and seabirds. In The Biology of Marine Birds (eds Schrieber, E. A. & Burger, J.) 527–557 (CRC Press, 2002).

  • 13.

    Hamer, K. C. Breeding biology, life histories and life history-environment interaction in seabirds. In The Biology of Marine Birds (eds Schrieber, E. A. & Burger, J.) 217–261 (CRC Press, 2002).

  • 14.

    Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).

  • 15.

    Wan, Q. H., Wu, H., Fujihara, T. & Fang, S. G. Which genetic marker for which conservation geneitic issue?. Electrophoresis 25, 2165–2176 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10(6), e0129342 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Pinet, P. et al. Barau’s Petrel Pterodroma baraui: history, biology and conservation of an endangered endemic petrel. Mar. Ornithol. 37, 107–113 (2009).

    Google Scholar 

  • 18.

    Lougnon, A. Sous le Signe de la Tortue. Voyage Anciens a I’Ile Bourbon, (1611–1725). Saint-Denis, La Reunion, France. (Editions Orphie, 2006).

  • 19.

    Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17(7), 1658–1673 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Antaky, C. C., Coklin, E. E., Toonen, R. J., Knapp, I. S. S. & Price, M. R. Unexpectedly high genetic diversity in a rare and endangered seabird in the Hawaiian Archipelago. PeerK 8, e8463 (2020).

    Article 

    Google Scholar 

  • 21.

    Smith, A. L. & Friesen, V. L. Differentiation of sympatric populations of the Band-rumped Storm Petrel in the Galapagos Islands: an examination of genetics, morphology, and vocalizations. Mol. Ecol. 16(8), 1593–1603 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Wiley, A. E. et al. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168, 119–130 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Hardy, O. J., Charbonnel, N., Fréville, H. & Heuertz, M. Microsatellite allele sizes: a simple test to assess their significance of genetic differentiation. Genetics 163(4), 1467–1482 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16(6), 1149–1166 (2008).

    Article 

    Google Scholar 

  • 25.

    Brooke, M. Albatrosses and Petrels Across the World (Oxford University, 2004).

  • 26.

    Pinet, P., Jaquemet, S., Phillips, R. A. & Le Corre, M. Sex-specific foraging strategies throughout the breeding season in a tropical sexually monomorphic small petrel. Anim. Behav. 83(4), 979–989 (2012).

    Article 

    Google Scholar 

  • 27.

    Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. PNAS 104(47), 18589–18594 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Gay, L. et al. Speciation with gene flow in the large white-headed gulls: Does selection counterbalance introgression?. Heredity 102, 122–146 (2009).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Zidat, T. et al. Reproductive isolation maintains distinct genotypes, phenotypes and chemical signatures in mixed colonies of the two European Calonectris shearwaters (Procellariiformes: Procellariidae). Zool. J. Linnean. Soc. 181(3), 711–726 (2017).

    Article 

    Google Scholar 

  • 30.

    Abbott, C. L. & Double, M. C. Genetic structure, conservation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses. Mol. Evol. 12, 2953–2962 (2003).

    Google Scholar 

  • 31.

    Welch, A. J. et al. Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109, 19–28 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Pinet, P. Biologie, écologie & conservation d’un oiseau marin endemique de La Réunion: Le Petrel de Barau (Pterodroma baraui), Thèse de Doctorat de l’Université de La Réunion (2012).

  • 33.

    Coulson, J. C. A review of philopatry in seabirds and comparisons with other waterbird species. Waterbirds 39, 229–326 (2016).

    Article 

    Google Scholar 

  • 34.

    Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Pinet, P. et al. Migration, wintering distribution and habitat use of an endangered tropical seabird, Barau’s Petrel Pterodroma baraui. Mar. Ecol. Prog. Ser. 423, 291–302 (2011).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Danckwerts, D. K., Corré, S., Pinet, P. L., Corre, M. & Humeau, L. Isolation and characterization of 15 polymorphic microsatellite loci for the Barau’s Petrel (Pterodroma baraui), an endangered endemic of Réunion Island (Indian Ocean). Waterbirds 39, 413–416 (2016).

    Article 

    Google Scholar 

  • 37.

    Schuelke, M. An economic method for the fluorescent labelling of PCR fragments. Nat. Biotechnol. 18(2), 233–234 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 43(3), 535–538 (2004).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Rousset, F. Genepop’007: a complete re-implementation of the GENEPOP software for windows and linus. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57(1), 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 41.

    Agapow, P. M. & Burt, A. Indices of multi-locus linkage disequilibrium. Mol. Ecol. Resour. 1, 101–102 (2001).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 4, 2281 (2014).

    Google Scholar 

  • 43.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).

    Google Scholar 

  • 46.

    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among population of the argan tree [Argania spinose (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).

    PubMed 
    Article 

    Google Scholar 

  • 47.

    Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).

    Article 

    Google Scholar 

  • 48.

    Paradis, E. Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).

    Article 

    Google Scholar 

  • 50.

    Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).

    Article 

    Google Scholar 

  • 51.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics of population structure. Evolution 38(6), 1358–1370 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Hardy, O. J. & Vekemans, X. SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual and population levels. Mol. Ecol. Resour. 2, 618–620 (2002).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Meirmans, P. G. GENODIVE version 3.0: easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20(4), 1126–1131 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Pons, O. & Petit, R. J. Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 144, 1237–1245 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 155(2), 945–959 (2000).

    Google Scholar 

  • 58.

    Porras-Hurtado, L. et al. An overview of STRUCUTE: applications, parameter settings, and supporting software. Front. Genet. 4, 98 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4), 1567–1587 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferrign weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Earl, D. A. & von Holdt, B. M. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Cons Genet Res 4, 359–361 (2012).

    Article 

    Google Scholar 

  • 64.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Carlen, E. & Munshi-South, J. Widespread genetic connectivity of feral pigeons across the Northeastern megacity. Evol. Appl. 14, 1–13 (2020).

    Google Scholar 

  • 67.

    Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1(3), 462–474 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reduction in effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).

    Article 

    Google Scholar 

  • 70.

    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21(14), 3403–3418 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 71.

    Luikart, G., Cornuet, J. M. & Allendorf, F. W. Temporal changes in allele frequencies provide estimates of population bottleneck size. Cons. Biol. 13(3), 523–530 (1999).

    Article 

    Google Scholar 

  • 72.

    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: an r package for manipulating, summarizing and analyzing population genetic data. Mol. Ecol. Resour. 17(1), 5–11 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Nikolic, N. & Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 7(6), 663–681 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10(3), 305–318 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Wickman, H. François, R. Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.2. https://CRAN.R-project.org/package=dplyr (2020).

  • 76.

    Humeau, L. et al. Genetic structuring among colonies of a pantropical seabird: Implication for subspecies validation and conservation. Ecol. Evol. (in press).

  • 77.

    Nunes, G. T. & Bugoni, L. Local adaptation drives population isolation in a tropical seabird. J Biogeogr. 45(2), 332–341 (2018).

    Article 

    Google Scholar 

  • 78.

    Barlow, E. J. et al. Weak large-scale population genetic structure in a philopatric seabird, the European Shag Phalacrocorax aristotelis. Ibis 153(4), 768–778 (2011).

    Article 

    Google Scholar 

  • 79.

    QGIS.org. QGIS Geographical Information System version 3.10. QGIS Association. http://www.qgis.org (2020).


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water