in

Feasibility of reintroducing grassland megaherbivores, the greater one-horned rhinoceros, and swamp buffalo within their historic global range

  • 1.

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Cardillo, M. et al. Human population density and extinction risk in the world ’ s carnivores. PLoS Biol. 2, 909–914 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Pimm, S. L. et al. Can we defy nature’s end ?. Science 293, 2207–2208 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).

    Article  Google Scholar 

  • 7.

    Pradhan, N. M. B. & Wegge, P. Dry season habitat selection by a recolonizing population of Asian elephants Elephas maximus in lowland Nepal. Acta Theriol. (Warsz) 52, 205–214 (2007).

    Article  Google Scholar 

  • 8.

    Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape South Africa: an assessment. Oryx 41(205), 214 (2007).

    Google Scholar 

  • 9.

    Owen-Smith, N. Megaherbivores: the influence of very large body size on ecology. Trends Ecol. Evol. https://doi.org/10.1111/j.1523-1739.1989.tb00246.x (1989).

    Article  Google Scholar 

  • 10.

    Karki, J. B., Jhala, Y. V. & Khanna, P. P. Grazing lawns in Terai Grasslands, Royal Bardia National Park, Nepal1. Biotropica 32, 423–429 (2000).

    Article  Google Scholar 

  • 11.

    McNaughton, S. J. Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191, 92–94 (1976).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Skarpe, C. et al. The return of the giants: ecological effects of an increasing elephant population. Ambio 33, 276–282 (2004).

    PubMed  Article  Google Scholar 

  • 13.

    Foose, T. J. & Van Strien, N. Asian Rhinos—Status Survey and Conservation Action Plan. Vol. 32 (1997).

  • 14.

    Subedi, N. et al. Population status, structure and distribution of the greater one-horned rhinoceros Rhinoceros unicornis in Nepal. Oryx 47, 352–360 (2013).

    Article  Google Scholar 

  • 15.

    Talukdar, B. R. R. C. Asian Rhino specialist group report. Pachyderm 53, 25–27 (2013).

    Google Scholar 

  • 16.

    Hedges, S., Sagar Baral, H., Timmins, R. & Duckworth, J. Bubalus arnee. IUCNRed List Threat. Species 2008 (2008).

  • 17.

    Leader-Williams, N. Fate riding on their horns—and genes?. ORYX 47, 311–312 (2013).

    Article  Google Scholar 

  • 18.

    Amin, R., Thomas, K., Emslie, R. H., Foose, T. J. & VanStrien, N. An overview of the conservation status of and threats to rhinoceros species in the wild. Int. Zoo Yearb. 40, 96–117 (2006).

    Article  Google Scholar 

  • 19.

    IUCN Red List Categories and Criteria, Version 3.1, second edition | IUCN Library System. IUCN (2012).

  • 20.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article  Google Scholar 

  • 21.

    Lacy, R. C. Vortex: A computer simulation model for population viability analysis. Wildl. Res. 20, 1–13 (1993).

    Article  Google Scholar 

  • 22.

    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission. Ecologial Applications (2013).

  • 23.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    Article  Google Scholar 

  • 24.

    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article  Google Scholar 

  • 25.

    Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299 (2009).

    Article  Google Scholar 

  • 26.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).

    Article  Google Scholar 

  • 27.

    Jhala, Y., Qureshi, Q. & Gopal, R. Status of Tigers, Copredators and Prey in India, 2014 (2015).

  • 28.

    Graham-Rowe, D. Biodiversity: endangered and in demand. Nature 480, S101–S103 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Frankham, R. Genetic considerations in reintroduction programmes for top-order, terrestrial predators. In Reintroduction of Top-Order Predators 371–387 (Wiley-Blackwell, 2009). https://doi.org/10.1002/9781444312034.ch17

  • 30.

    Martin, E., Kumar Talukdar, B. & Vigne, L. Rhino poaching in Assam: challenges and opportunities. Pachyderm (2009).

  • 31.

    Rawat, G. S., Goyal, S. P. & Johnsingh, A. J. T. Ecological observations on the grasslands of Corbett Tiger Reserve India. Indian Forester 123(958), 963 (1997).

    Google Scholar 

  • 32.

    Dinerstein, E. & Schaller, G. The Return of the Unicorns: Natural History and Conservation of Greater—One Horned Rhinoceros (2003). https://doi.org/10.7312/dine08450.

  • 33.

    N Subedi 2012 Effect of Mikania micrantha on thrdemography, Habitat use, and Nutrition of Greater one horned rhinoceros in Chitwan National Park Dr. Philos Thesis

  • 34.

    Mathur, V.B., Gopal, R., Yadav, S.P., P. R. S. Management Effectiveness Evaluation (MEE) of Tiger Reserves in India: Process and Outcomes 97 (2011).

  • 35.

    Amin, R., Thomas, K., Emslie, R. H., Foose, T. J. & Van Strien, N. V. An overview of the conservation status of and threats to rhinoceros species in the wild. Int. Zoo Yearb. 40, 96–117 (2006).

    Article  Google Scholar 

  • 36.

    Singh, S. P., Sharma, A. & Talukdar, B. K. Translocation of Rhinos within Assam : a successful third round of the second phase of translocations under Indian Rhino Vision (IRV) 2020, 1–6 (2012).

    Google Scholar 

  • 37.

    Jhala, Y. ., Qureshi, Q., Gopal, R. & Sinha, P. . Status of the Tigers, Co-predators, and Prey in India, 2010. (2011).

  • 38.

    Rai, S. After 250 years, rhinos set to make comeback in west UP|Meerut News—Times of India. Times of India (2016).

  • 39.

    Subedi, N., Lamichhane, B. R., Amin, R., Jnawali, S. R. & Jhala, Y. V. Demography and viability of the largest population of greater one-horned rhinoceros in Nepal. Glob. Ecol. Conserv. 12, 241–252 (2017).

    Article  Google Scholar 

  • 40.

    IUCN Standards and Petitions Committee. IUCN Standards and Petitions Committee. Stand. Petitions Comm. 1, 1–60 (2019).

    Google Scholar 

  • 41.

    Cockrill, W. R. The water buffalo: a review. Br. Vet. J. 137, 8–10 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Kumar, S. et al. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim. Genet. 38, 227–232 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Aiyadurai, A. Wildlife hunting and conservation in Northeast India—a need for an interdisciplinary understanding.pdf. Int. J. Gall. Conserv. 2, 61–73 (2011).

    Google Scholar 

  • 44.

    Jhala, H. Y., Pokheral, C. P. & Subedi, N. Well being and conservation awareness of communities around Chitwan National Park, Nepal|Jhala|Indian Forester. Indian For. 145, 114–120 (2019).

    Google Scholar 

  • 45.

    Heinen, J. T. & Kandel, R. Threats to a small population: a census and conservation recommendations for wild buffalo Bubalus arnee in Nepal. Oryx 40, 324–330 (2006).

    Article  Google Scholar 

  • 46.

    Choudhury, A. The decline of the wild water buffalo in north-east India. Oryx 28, 70–73 (1994).

    Article  Google Scholar 

  • 47.

    Magioncalda, W. A modern insurgency: India’s evolving naxalite problem. S. Asia Monitor 140 (2010).

  • 48.

    Melles, S. J., Fortin, M.-J., Lindsay, K. & Badzinki, D. Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Glob. Chang. Biol. 17, 17–31 (2011).

    ADS  Article  Google Scholar 

  • 49.

    Challender, D. W. S. & MacMillan, D. C. Poaching is more than an enforcement problem. Conserv. Lett. 7, 484–494 (2014).

    Article  Google Scholar 

  • 50.

    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?. Ecology 83, 2027–2036 (2002).

    Article  Google Scholar 

  • 51.

    Stockman, A. K., Beamer, D. A. & Bond, J. E. An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Divers. Distrib. 12, 81–89 (2006).

    Article  Google Scholar 

  • 52.

    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).

    Article  Google Scholar 

  • 53.

    Phillips, S. J. & Dudı, M. Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecograohy 31, 161–175 (2008).

    Article  Google Scholar 

  • 54.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  • 55.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).

    Article  Google Scholar 

  • 56.

    Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46 (1991).

    ADS  Article  Google Scholar 

  • 57.

    Roy, D. P. et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014).

    ADS  Article  Google Scholar 

  • 58.

    Dinerstein, E. & Price, L. Demography and habitat use by greater one-horned rhinoceros in Nepal. J. Wildl. Manage. 55, 401 (1991).

    Article  Google Scholar 

  • 59.

    Bontemps, S. et al. GLOBCOVER 2009 Products Description and Validation Report.

  • 60.

    Barsi, J., Lee, K., Kvaran, G., Markham, B. & Pedelty, J. The spectral response of the landsat-8 operational land imager. Remote Sens. 6, 10232–10251 (2014).

    ADS  Article  Google Scholar 

  • 61.

    Laurie, A. Behavioural ecology of the Greater one-horned rhinoceros (Rhinoceros unicornis). J. Zool. 196, 307–341 (2009).

    Article  Google Scholar 

  • 62.

    Dnerstein, E. & Price, L. Demography and habitat use by greater one-horned rhinoceros in Nepal author(s): Eric Dinerstein and Lori Price Source. J. Wildl. Manage. 55, 401–411 (1991).

    Article  Google Scholar 

  • 63.

    Pettorelli, N. et al. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Res. 46, 15–27 (2011).

    ADS  Article  Google Scholar 

  • 64.

    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS  Article  Google Scholar 

  • 65.

    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. https://doi.org/10.1002/ecm.1370 (2019).

    Article  Google Scholar 

  • 66.

    Peterson, A. T. & Nakazawa, Y. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2007.00347.x (2007).

    Article  Google Scholar 

  • 67.

    Laurie, A. Behavioural ecology of the greater one-horned rhinoceros Rhinoceros unicornis. J. Zool. 196, 307–341 (1982).

    Article  Google Scholar 

  • 68.

    Kriticos, D. J. et al. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).

    Article  Google Scholar 

  • 69.

    Rodríguez, E. et al. An Assessment of the SRTM Topographic Products.

  • 70.

    Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).

    Article  Google Scholar 

  • 71.

    Society WC. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic) Society. Conserv Wildl https://doi.org/10.7927/H4BP00QC (2005).

    Article  Google Scholar 

  • 72.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Article  Google Scholar 

  • 73.

    Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2011).

    Article  Google Scholar 

  • 74.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  • 75.

    Shabani, F., Kumar, L. & Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. 18, (2018).

  • 76.

    Warren, D. L. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 21, 335–342 (2011).

    Google Scholar 

  • 77.

    Wiltshire, K. H. & Tanner, J. E. Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species. Ecol. Modell. 429, 109071 (2020).

    Article  Google Scholar 

  • 78.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Article  Google Scholar 

  • 79.

    Puri, K. & Joshi, R. A case study of greater one horned rhinoceros (Rhinoceros unicornis) in Kaziranga National Park of Assam India. NeBIO 9, 307–309 (2018).

    Google Scholar 

  • 80.

    DNPWC 2015. Rhino Count Report 2015 DNPWC.

  • 81.

    Mukherjee, T., Sharma, L. K., Saha, G. K., Thakur, M. & Chandra, K. Past, present and future: combining habitat suitability and future landcover simulation for long-term conservation management of Indian rhino. Sci. Rep. https://doi.org/10.1038/s41598-020-57547-0 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    CCF West Bengal. Estimation of Indian Rhinoceros (Rhinoceros unicornis) 2019 West Bengal (2019)

  • 83.

    Boyce, M. Population viability analysis: adaptive management for threatened and endangered species. 226–238 (1997).

  • 84.

    Khatri, T. B., Shah, D. N. & Mishra, N. Wild Water Buffalo Bubalus arnee in Koshi Tappu Wildlife Reserve, Nepal: status, population and conservation importance. J. Threat. Taxa 04, 3294–3301 (2012).

    Article  Google Scholar 

  • 85.

    Phillips, S., Anderson, R., Dudík, M., Schapire, R. & Blair, M. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).


  • Source: Ecology - nature.com

    Tropical storms trigger phytoplankton blooms in the deserts of north Indian Ocean

    Insights in genetic diversity of German and Italian grape berry moth (Eupoecilia ambiguella) populations using novel microsatellite markers