in

Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

  • 1.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130279 (2015).

    Article  Google Scholar 

  • 3.

    Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260 (2015).

    Article  Google Scholar 

  • 4.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article  Google Scholar 

  • 5.

    Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130273 (2015).

  • 7.

    Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).

    Article  Google Scholar 

  • 9.

    Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Am. Zool. 32, 674–682 (1992).

    Article  Google Scholar 

  • 10.

    Moy, F. E. & Christie, H. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 8, 309–321 (2012).

    Article  Google Scholar 

  • 11.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Airoldi, L. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology 79, 2759–2770 (1998).

    Article  Google Scholar 

  • 13.

    Connell, S. D., Foster, M. S. & Airoldi, L. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 495, 299–307 (2014).

    Article  Google Scholar 

  • 14.

    Hughes, T. P. & Connell, J. H. Multiple stressors on coral reefs: a long-term perspective. Limnol. Oceanogr. 44, 932–940 (1999).

    Article  Google Scholar 

  • 15.

    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).

    Article  Google Scholar 

  • 16.

    O’Brien, J. & Scheibling, R. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 590, 1–17 (2018).

    Article  Google Scholar 

  • 17.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Kéfi, S., Holmgren, M. & Scheffer, M. When can positive interactions cause alternative stable states in ecosystems? Funct. Ecol. 30, 88–97 (2015).

    Article  Google Scholar 

  • 19.

    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Article  Google Scholar 

  • 20.

    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    Article  Google Scholar 

  • 22.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130269 (2015).

    Article  Google Scholar 

  • 23.

    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 68, 64–76 (2018).

    Article  Google Scholar 

  • 24.

    Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Vizzini, S. et al. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci. Rep. 7, 4018 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone. Sci. Rep. 8, 11354 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120442 (2013).

    Article  CAS  Google Scholar 

  • 31.

    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  • 34.

    Harvey, B. P., Agostini, S., Kon, K., Wada, S. & Hall-Spencer, J. M. Diatoms dominate and alter marine food-webs when CO2 rises. Diversity 11, 242 (2019).

    CAS  Article  Google Scholar 

  • 35.

    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169 (2011).

    CAS  Article  Google Scholar 

  • 37.

    Enochs, I. C. et al. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Johnson, C. R. & Mann, K. H. Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecol. Monogr. 58, 129–154 (1988).

    Article  Google Scholar 

  • 40.

    McCook, L., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).

    Article  Google Scholar 

  • 41.

    Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Anthony, K. R. et al. Ocean acidification and warming will lower coral reef resilience. Glob. Change Biol. 17, 1798–1808 (2011).

    Article  Google Scholar 

  • 44.

    Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265 (2009).

    Article  Google Scholar 

  • 46.

    Bellgrove, A., McKenzie, P., McKenzie, J. & Sfiligoj, B. Restoration of the habitat-forming fucoid alga Hormosira banksii at effluent-affected sites: competitive exclusion by coralline turfs. Mar. Ecol. Prog. Ser. 419, 47–56 (2010).

    Article  Google Scholar 

  • 47.

    Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51, 408–414 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega Thurber, R. & Sandin, S. A. Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Isæus, M., Malm, T., Persson, S. & Svensson, A. Effects of filamentous algae and sediment on recruitment and survival of Fucus serratus (Phaeophyceae) juveniles in the eutrophic Baltic Sea. Eur. J. Phycol. 39, 301–307 (2004).

    Article  Google Scholar 

  • 50.

    Airoldi, L. The effects of sedimentation on rocky coast assemblages. Oceanogr. Mar. Biol. Annu. Rev. 41, 169–171 (2003).

    Google Scholar 

  • 51.

    Decho, A. W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 9–16 (1990).

    Google Scholar 

  • 52.

    Schiel, D. R., Wood, S. A., Dunmore, R. A. & Taylor, D. I. Sediment on rocky intertidal reefs: effects on early post-settlement stages of habitat-forming seaweeds. J. Exp. Mar. Biol. Ecol. 331, 158–172 (2006).

    Article  Google Scholar 

  • 53.

    Chapman, A. S., Albrecht, A. S. & Fletcher, R. L. Differential effects of sediments on survival and growth of Fucus serratus embryos (Fucales, Phaeophyceae). J. Phycol. 38, 894–903 (2002).

    Article  Google Scholar 

  • 54.

    Decho, A. W. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273 (2000).

    Article  Google Scholar 

  • 55.

    Haas, A. F. et al. Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J. Exp. Mar. Biol. Ecol. 389, 53–60 (2010).

    CAS  Article  Google Scholar 

  • 56.

    Smith, J. E. et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Dijkstra, J. A. et al. Invasive seaweeds transform habitat structure and increase biodiversity of associated species. J. Ecol. 105, 1668–1678 (2017).

    Article  Google Scholar 

  • 61.

    Sieg, J. & Heard, R. W. Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. III. On the Occurrence of Teleotanais gerlachi Lang, 1956 (Nototanaidae) in the Eastern Gulf. Gulf Caribb. Res. 7, 267–271 (1983).

    Google Scholar 

  • 62.

    Allen, R., Foggo, A., Fabricius, K., Balistreri, A. & Hall-Spencer, J. M. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. Mar. Pollut. Bull. 124, 607–613 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    IPCC. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the IPCC. p. 1535 (2013).

  • 64.

    Falkenberg, L. J., Connell, S. D. & Russell, B. D. Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. J. Appl. Ecol. 50, 51–58 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Atalah, J., Hopkins, G. A. & Forrest, B. M. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus. PLoS ONE 8, e80365 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Conklin, E. J. & Smith, J. E. Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol. Invasions 7, 1029–1039 (2005).

    Article  Google Scholar 

  • 67.

    Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 6, e5332 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).

    Google Scholar 

  • 69.

    R Development Core Team. R: A language and environment for statistical computing (2017).

  • 70.

    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations, ORNL/CDIAC-105 (2006).

  • 71.

    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    CAS  Article  Google Scholar 

  • 72.

    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part Oceanogr. Res. Pap. 34, 1733–1743 (1987).

    CAS  Article  Google Scholar 

  • 73.

    Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride solutions from 273.15 to 318.15 K. J. Chem. Eng. Data 35, 253–257 (1990).

    CAS  Article  Google Scholar 

  • 74.

    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    Article  Google Scholar 

  • 75.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article  Google Scholar 

  • 77.

    Griffith, J. C., Lee, W. G., Orlovich, D. A. & Summerfield, T. C. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PLoS ONE 12, e0179652 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5, 1492 (2016).

  • 79.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  Article  Google Scholar 

  • 81.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Oksanen, J. et al. The vegan package. Vegan Community Ecol. Package R Package Version 25-5 Httpscranr-Proj (2019).

  • 84.

    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (2020).

  • 85.

    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  • 86.

    Kassambara, A. ggpubr:“ggplot2” based publication ready plots. R Package Version 024 (2019).

  • 87.

    Harvey, B. P. et al. ‘Feedback mechanisms stabilise degraded turf algal systems at a CO2seep site’ – Associated Raw Data for Figures https://doi.org/10.6084/m9.figshare.13289588.v1 (2020).


  • Source: Ecology - nature.com

    Impacts of wildlife trade on terrestrial biodiversity

    Meet the research scientists behind MITEI’s Electric Power Systems Center