in

Finding Nemo’s clock reveals switch from nocturnal to diurnal activity

  • 1.

    Thresher, R. E., Colin, P. L. & Bell, L. J. Planktonic duration, distribution and population structure of western and Central Pacific Damselfishes (Pomacentridae). Copeia 420–434, 1989. https://doi.org/10.2307/1445439 (1989).

    Article 

    Google Scholar 

  • 2.

    Leis, J. M. Behaviour as input for modelling dispersal of fish larvae: Behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Mar. Ecol. Prog. Ser. 347, 185–194. https://doi.org/10.3354/meps06977 (2007).

    Article 
    ADS 

    Google Scholar 

  • 3.

    Fisher, R., Leis, J. M., Clark, D. L. & Wilson, S. K. Critical swimming speeds of late-stage coral reef fish larvae: Variation within species, among species and between locations. Mar. Biol. 147, 1201–1212. https://doi.org/10.1007/s00227-005-0001-x (2005).

    Article 

    Google Scholar 

  • 4.

    Stobutzki, I. & Bellwood, D. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41. https://doi.org/10.3354/meps149035 (1997).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. 104, 858–863. https://doi.org/10.1073/pnas.0606777104 (2007).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 6.

    Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. Local Replenishment of Coral Reef fish populations in a Marine Reserve. Science 316, 742–744. https://doi.org/10.1126/science.1140597 (2007).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 7.

    Jones, G. P., Planes, S. & Thorrold, S. R. Coral Reef Fish Larvae Settle Close to Home. Curr. Biol. 15, 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70, 309–340 (2002).

    Google Scholar 

  • 9.

    Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS ONE. https://doi.org/10.1371/journal.pone.0066039 (2013).

  • 10.

    Dufour, V. & Galzin, R. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar. Ecol. Prog. Ser. 102, 143–152. https://doi.org/10.3354/meps102143 (1993).

    Article 
    ADS 

    Google Scholar 

  • 11.

    Holbrook, S. & Schmitt, R. Settlement patterns and process in a coral reef damselfish: In situ nocturnal observations using infrared video. In Proceedings of the 8th International Coral Reef Symposium, Vol. 2, 1143–1148 (1997).

  • 12.

    Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fishes 53, 259–266. https://doi.org/10.1023/A:1007424719764 (1998).

    Article 

    Google Scholar 

  • 13.

    Litsios, G. et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol. Biol. 12, 212. https://doi.org/10.1186/1471-2148-12-212 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Bridge, T., Scott, A. & Steinberg, D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs 31, 1057–1062. https://doi.org/10.1007/s00338-012-0916-x (2012).

    Article 
    ADS 

    Google Scholar 

  • 15.

    Mariscal, R. N. Behavior of symbiotic fishes and sea anemones. In Winn, H. E. & Olla, B. L. (eds.) Behavior of Marine Animals, 327–360 (Springer US, 1972). https://doi.org/10.1007/978-1-4684-0910-9_4.

  • 16.

    Tauber, E., Last, K. S., Olive, P. J. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythm. 19, 445–458. https://doi.org/10.1177/0748730404268775 (2004).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Emran, F., Rihel, J., Adolph, A. R. & Dowling, J. E. Zebrafish larvae lose vision at night. Proc. Natl. Acad. Sci. 107, 6034–6039. https://doi.org/10.1073/pnas.0914718107 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 18.

    Cahill, G. M., Hurd, M. W. & Batchelor, M. M. Circadian rhythmicity in the locomotor activity of larval zebrafish. NeuroReport 9, 3445–3449. https://doi.org/10.1097/00001756-199810260-00020 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754. https://doi.org/10.1038/s41598-018-27080-2 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 20.

    Frøland Steindal, I. & Whitmore, D. Circadian clocks in fish—What have we learned so far?. Biology 8, 17. https://doi.org/10.3390/biology8010017 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Vatine, G., Vallone, D., Gothilf, Y. & Foulkes, N. S. It’s time to swim! Zebrafish and the circadian clock. FEBS Lett. 585, 1485–1494. https://doi.org/10.1016/j.febslet.2011.04.007 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276. https://doi.org/10.1039/b902763g (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Häder, D.-P., Kumar, H. D., Smith, R. C. & Worrest, R. C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6, 267–285. https://doi.org/10.1039/B700020K (2007).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Eckes, M., Siebeck, U., Dove, S. & Grutter, A. Ultraviolet sunscreens in reef fish mucus. Mar. Ecol. Prog. Ser. 353, 203–211. https://doi.org/10.3354/meps07210 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Kienzler, A., Bony, S. & Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 134–135, 47–56. https://doi.org/10.1016/j.aquatox.2013.03.005 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084 (1984).

  • 27.

    Tan, M. H. et al. Finding Nemo: Hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. GigaScience. https://doi.org/10.1093/gigascience/gix137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Cavallari, N. et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001142 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Vallone, D., Gondi, S. B., Whitmore, D. & Foulkes, N. S. E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. 101, 4106–4111. https://doi.org/10.1073/pnas.0305436101 (2004).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 30.

    Vatine, G. et al. Light directs Zebrafish period2 expression via conserved D and E boxes. PLOS Biol. https://doi.org/10.1371/journal.pbio.1000223 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Mracek, P. et al. Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression. PLOS ONE https://doi.org/10.1371/journal.pone.0051278 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Zhao, H. et al. Modulation of DNA repair systems in blind cavefish during evolution in constant darkness. Curr. Biol. 28, 3229-3243.e4. https://doi.org/10.1016/j.cub.2018.08.039 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Tolimieri, N., Haine, O., Jeffs, A., McCauley, R. & Montgomery, J. Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs 23, 184–191. https://doi.org/10.1007/s00338-004-0383-0 (2004).

    Article 

    Google Scholar 

  • 34.

    Fisher, R. & Bellwood, D. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar. Ecol. Prog. Ser. 263, 177–188. https://doi.org/10.3354/meps263177 (2003).

    Article 
    ADS 

    Google Scholar 

  • 35.

    Elliott, J. K. & Mariscal, R. N. Ontogenetic and interspecific variation in the protection of anemonefishes from sea anemones. J. Exp. Mar. Biol. Ecol. 208, 57–72. https://doi.org/10.1016/S0022-0981(96)02629-9 (1997).

    Article 

    Google Scholar 

  • 36.

    Fautin, D. G. The anemonefish symbiosis: What is known and what is not. Symbiosis 10, 23–46 (1991).

    Google Scholar 

  • 37.

    Di Rosa, V., Frigato, E., López-Olmeda, J. F., Sánchez-Vázquez, F. J. & Bertolucci, C. The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLOS ONE https://doi.org/10.1371/journal.pone.0132235 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Idda, M. L. et al. Chapter 3—Circadian clocks: Lessons from fish. In Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G. (eds.) The Neurobiology of Circadian Timing, vol. 199 of Progress in Brain Research, 41–57, DOI: https://doi.org/10.1016/B978-0-444-59427-3.00003-4 (Elsevier, 2012).

  • 39.

    Patiño, M. A. L., Rodríguez-Illamola, A., Conde-Sieira, M., Soengas, J. L. & Míguez, J. M. Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus Mykiss. Chronobiol. Int. 28, 381–389. https://doi.org/10.3109/07420528.2011.566398 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Vera, L. M. et al. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol. Int. 30, 649–661. https://doi.org/10.3109/07420528.2013.775143 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Martín-Robles, A. J., Whitmore, D., Sánchez-Vázquez, F. J., Pendón, C. & Muñoz-Cueto, J. A. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole,Solea senegalensis. J. Comp. Physiol. B 182, 673–685. https://doi.org/10.1007/s00360-012-0653-z (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Park, J.-G., Park, Y.-J., Sugama, N., Kim, S.-J. & Takemura, A. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A 193, 403–411. https://doi.org/10.1007/s00359-006-0194-6 (2007).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Martín-Robles, A. J., Isorna, E., Whitmore, D., Muñoz-Cueto, J. A. & Pendón, C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 7–15. https://doi.org/10.1016/j.cbpa.2011.01.015 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Whitmore, D., Foulkes, N. S., Strähle, U. & Sassone-Corsi, P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1, 701–707. https://doi.org/10.1038/3703 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685. https://doi.org/10.1126/science.288.5466.682 (2000).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 46.

    Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc. Natl. Acad. Sci. 107, 3846–3851. https://doi.org/10.1073/pnas.0913256107 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 47.

    Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655. https://doi.org/10.1210/en.2007-0804 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    del Pozo, A., Montoya, A., Vera, L. M. & Sánchez-Vázquez, F. J. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass. Physiol. Behav. 106, 446–450. https://doi.org/10.1016/j.physbeh.2012.03.006 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Job, S. & Shand, J. Spectral sensitivity of larval and juvenile coral reef fishes: Implications for feeding in a variable light environment. Mar. Ecol. Prog. Ser. 214, 267–277. https://doi.org/10.3354/meps214267 (2001).

    Article 
    ADS 

    Google Scholar 

  • 50.

    Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x (2007).

    Article 

    Google Scholar 

  • 51.

    Godwin, J. & Fautin, D. G. Defense of host actinians by anemonefishes. Copeia 902–908, 1992. https://doi.org/10.2307/1446171 (1992).

    Article 

    Google Scholar 

  • 52.

    Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34. https://doi.org/10.1016/j.jembe.2008.11.006 (2009).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602. https://doi.org/10.1007/s00227-010-1583-5 (2011).

    Article 

    Google Scholar 

  • 54.

    Verde, E. A., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: Direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429. https://doi.org/10.1007/s00227-015-2768-8 (2015).

    CAS 
    Article 

    Google Scholar 

  • 55.

    da Silva, K. B. & Nedosyko, A. Sea Anemones and Anemonefish: A Match Made in Heaven. In Goffredo, S. & Dubinsky, Z. (eds.) The Cnidaria, Past, Present and Future, 425–438 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-31305-4_27.

  • 56.

    Vallone, D., Santoriello, C., Gondi, S. B. & Foulkes, N. S. Basic protocols for zebrafish cell lines. In Rosato, E. (ed.) Circadian Rhythms: Methods and Protocols, 429–441. https://doi.org/10.1007/978-1-59745-257-1_35 (Humana Press, 2007).

  • 57.

    Dekens, M. P. S., Foulkes, N. S. & Tessmar-Raible, K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0172038 (2017).

  • 58.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).

  • 60.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Use R! (Springer, 2009).

  • 61.

    Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythm. 29, 391–400. https://doi.org/10.1177/0748730414553029 (2014).

    Article 

    Google Scholar 

  • 62.

    Kõressaar, T. et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938. https://doi.org/10.1093/bioinformatics/bty036 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115. https://doi.org/10.1093/nar/gks596 (2012).

  • 64.

    Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. https://doi.org/10.1093/bioinformatics/btm091 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Wit, P. D. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067. https://doi.org/10.1111/1755-0998.12003 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Study reveals plunge in lithium-ion battery costs

    Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species