in

Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature

  • 1.

    Capece MC, Clark E, Saleh JK, Halford D, Heinl N, Hoskins S, et al. Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under muliple forms of stress. Dordrecht, Neaderlands: Springer; 2013. p. 3–60.

  • 2.

    Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–12.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161:799–809.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–81.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Jannasch HW, Taylor CD. Deep-sea microbiology. Ann Rev Microbiol. 1984;38:487–514.

    CAS 
    Article 

    Google Scholar 

  • 8.

    Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–22.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Yayanos AA. Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol. 1995;49:777–805.

    CAS 
    Article 

    Google Scholar 

  • 10.

    Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol. 2008;74:6298–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Horikoshi K, Bull AT Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, editor. Extremophiles handbook. Tokyo, Japan: Springer; 2011. p. 3–18.

  • 12.

    Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA. 2009;106:19659–65.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Talley LD, Pickard GL, Emery WJ, Swift JH. Typical distributions of water characteristics. In: Descriptive physical oceanography, 6th ed. London, UK: Elsevier; 2011. p. 67–110.

  • 14.

    Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19:721–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Berhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol. 1998;54:1258–61.

    Article 

    Google Scholar 

  • 16.

    Scoma A, Garrido-Amador P, Nielsen SD, Roy H, Kjeldsen KU. The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol. 2019;85:e00802–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Wiegel J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev. 1990;75:155–70.

    Article 

    Google Scholar 

  • 18.

    Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Zeikus JG. Thermophilic Bacteria—Ecology. Physiol Technol Enz Microb Technol. 1979;1:243–52.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA. 1986;83:9542–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Jannasch HW, Wirsen CO. Variability of pressure adaptation in deep sea bacteria. Arch Microbiol. 1984;139:281–8.

    Article 

    Google Scholar 

  • 22.

    Yayanos AA, Chastain R. The influence of nutrition on the physiology of piezophilic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P, Eds. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; 6; 1999.

  • 23.

    Matsumura P, Keller DM, Marquis RE. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol. 1974;1:176–89.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Yayanos AA, Dietz AS, Van, Boxtel R. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol. 1982;44:1356–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol. 1984;130:1911–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol. 2007;73:838–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Marteinsson VT, Birrien J-L-, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol. 1999;49:351–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Alain K. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Sys Evol Microbiol. 2002;52:1331–9.

    CAS 

    Google Scholar 

  • 30.

    Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol. 1997;168:1–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res. 2000;154:297–306.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environ Microbiol. 2013;15:1262–74.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles. 1998;2:1–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem. 2006;70:749–52.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Xu Y, Nogi Y, Kato C, Liang Z, Ruger H-J, De Kegel D, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol. 2003;53:533–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Jap Soc Extremophil. 2010a;9:25–30.

    Article 

    Google Scholar 

  • 37.

    Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2010b;11:33–41.

    Google Scholar 

  • 38.

    Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol. 2002;52:1527–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Yayanos AA, Dietz AS, van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. 1979;205:808–10.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons. 1995;4:1–9.

    Article 

    Google Scholar 

  • 42.

    Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marinemicroorganisms. Tibtech. 1996;14:6–12.

    CAS 
    Article 

    Google Scholar 

  • 43.

    Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles. 1999;3:71–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. Systematic and Applied Microbiology. 1988;10:152–60.

    Article 

    Google Scholar 

  • 45.

    Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, et al. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:3766–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. 2019;00:e966.

    Google Scholar 

  • 48.

    Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, et al. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol. 2019;10:1497.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol. 2007;57:60–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol. 2003;53:173–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 2006;56:1233–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol. 2009;11(8):1983–97.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993;160:338–49.

    CAS 
    Article 

    Google Scholar 

  • 54.

    Li Y, Mandelco L, Wiegel J. Isolation and Characterization of a Moderately Thermophilic Anaerobic Alkaliphile. Clostridium paradoxum sp. nov. Int J Sys Bacteriol. 1993;43:450–60.

    Article 

    Google Scholar 

  • 55.

    Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Sys Evol Microbiol. 2015;65:30–5.

    CAS 
    Article 

    Google Scholar 

  • 56.

    Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    González JM, Kato C, Horikoshi K. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol. 1995;164:159–64.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcusjannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol. 1983;136:254–61.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cooling homes without warming the planet

    Powering the energy transition with better storage