in

Functionalized MWCNTs-quartzite nanocomposite coated with Dacryodes edulis stem bark extract for the attenuation of hexavalent chromium

  • 1.

    Akpomie, K. G. & Dawodu, F. A. Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media: a novel adsorbent. Trans. R. Soc. South Africa 70(1), 83–88 (2015).

    Article 

    Google Scholar 

  • 2.

    Ali, A., Saeed, K. & Mabood, F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex. Eng. J. 55(3), 2933–2942 (2016).

    Article 

    Google Scholar 

  • 3.

    Amaku, J. F., Ogundare, S. A., Akpomie, K. G., Ngwu, C. M. & Conradie, J. Sequestered uptake of chromium(VI) by Irvingia gabonensis stem bark extract anchored silica gel. Biomass Conver. Biorefinery 3, 19 (2021).

    Google Scholar 

  • 4.

    Malwade, K., Lataye, D., Mhaisalkar, V., Kurwadkar, S. & Ramirez, D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. Int. J. Environ. Sci. Technol. 13(9), 2107–2116 (2016).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Belay, A. A. Impacts of chromium from tannery effluent and evaluation of alternative treatment options. J. Environ. Prot. 1(01), 53 (2010).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Das, A. K. Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coord. Chem. Rev. 248(1), 81–99 (2004).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Paš, M., Milačič, R., Drašar, K., Pollak, N. & Raspor, P. Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure. Biometals 17(1), 25–33 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Medeiros, M. et al. Elevated levels of DNA–protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium. Mutagenesis 18(1), 19–24 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Tuzen, M.; Elik, A.; Altunay, N., Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr (VI) in waters and total chromium in beverages and vegetables. J. Mol. Liq. 2021, 329, 115556.

  • 10.

    Gao, H. et al. Improved Adsorption Performance of α-Fe2O3 Modified with Carbon Spheres for Cr (VI) Removal from Aqueous Solution. J. Nanosci. Nanotechnol. 18(2), 1034–1042 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Amaku, J. F.; Ogundare, S. A.; Akpomie, K. G.; Conradie, J., Enhanced sequestration of chromium (VI) onto spent self-indicating silica gels coated with Harpephyllum caffrum stem bark extract. International Journal of Environmental Analytical Chemistry 2021, 1–17.

  • 12.

    Pagilla, K. R. & Canter, L. W. Laboratory studies on remediation of chromium-contaminated soils. J. Environ. Eng. 125(3), 243–248 (1999).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ali, J. et al. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J. Mol. Liq. 291, 111299 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Aksu, Z., Özer, D., Ekiz, H. I., Kutsal, T. & Çaglar, A. Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ. Technol. 17(2), 215–220 (1996).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Tiravanti, G., Petruzzelli, D. & Passino, R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36(2), 197–207 (1997).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Seaman, J. C., Bertsch, P. M. & Schwallie, L. In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ. Sci. Technol. 33(6), 938–944 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Amaku, J. F. et al. Chrysophyllum albidum stem bark extract coated tillite adsorbent for the uptake of Cr (VI): thermodynamic, kinetic, isotherm, and reusability. Biomass Conver. Biorefinery 2, 1–13 (2021).

    Google Scholar 

  • 18.

    Lyubchik, S. I. et al. Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242(1), 151–158 (2004).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Demirbas, E., Kobya, M., Senturk, E. & Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sea 30(4), 533–539 (2004).

    CAS 

    Google Scholar 

  • 20.

    Oliveira, E., Montanher, S., Andrade, A., Nobrega, J. & Rollemberg, M. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40(11), 3485–3490 (2005).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Samuel, M. S. et al. Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol. 121, 285–292 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Samuel, M. S. et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium (VI) removal from aqueous solution. Int. J. Biol. Macromol. 119, 540–547 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Parlayici, S., Eskizeybek, V., Avcı, A. & Pehlivan, E. Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J. Nanostruct. Chem. 5(3), 255–263 (2015).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Hu, J., Chen, C., Zhu, X. & Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Amaku, J., Ogundare, S., Akpomie, K., Ngwu, C. & Conradie, J. Enhanced chromium (VI) removal by Anacardium occidentale stem bark extract-coated multiwalled carbon nanotubes. Int. J. Environ. Sci. Technol. 6, 1–14 (2021).

    Google Scholar 

  • 26.

    Amaku, J. F. et al. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. Int. J. Phytoremed. 5, 1–11 (2021).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Tunali, S., Kiran, I. & Akar, T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner. Eng. 18(7), 681–689 (2005).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Módenes, A. N. et al. Study of the involved sorption mechanisms of Cr (VI) and Cr (III) species onto dried Salvinia auriculata biomass. Chemosphere 172, 373–383 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Hlihor, R. M., Figueiredo, H., Tavares, T. & Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. Prot. 108, 44–56 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Ji, B. et al. Chromium (VI) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon. Chem. Eng. Commun. 7, 1–8 (2018).

    Google Scholar 

  • 31.

    Zhu, Y. et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Biores. Technol. 261, 142–150 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zhang, S.-H. et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 335, 945–953 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Amaku, J. F. et al. Adsorption of Cr (VI) onto Azadirachta indica stem bark extract modified dolerite composite adsorbent. Int. J. Environ. Anal. Chem. 7, 1–18 (2021).

    Google Scholar 

  • 34.

    Agarwal, G., Bhuptawat, H. K. & Chaudhari, S. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Biores. Technol. 97(7), 949–956 (2006).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Zhang, Y. et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution. Chem. Eng. J. 3, 79 (2018).

    Google Scholar 

  • 36.

    Moussout, H., Ahlafi, H., Aazza, M. & El Akili, C. Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr (VI)) from wastewater. Int. J. Biol. Macromol. 108, 1063–1073 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Moreira, A. L. D. S. L. et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu (II) and Cr (VI) from aqueous solution. Carbohydr. Polym. 201, 218–227 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Lordi, V. & Yao, N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Harris, P. J., Carbon nanotubes and related structures: new materials for the twenty-first century. AAPT: 2004.

  • 41.

    Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Dai, H. et al. Electrical transport properties and field effect transistors of carbon nanotubes. NANO 1(01), 1–13 (2006).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Rao, G. P., Lu, C. & Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Vuković, G. D. et al. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Gao, Z., Bandosz, T. J., Zhao, Z., Han, M. & Qiu, J. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Xu, D., Tan, X., Chen, C. & Wang, X. Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Kanthapazham, R., Ayyavu, C. & Mahendiradas, D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalin. Water Treat. 57(36), 16871–16885 (2016).

    CAS 

    Google Scholar 

  • 48.

    Wang, Y. et al. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 92, 104–112 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Patiño, Y. et al. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 136, 174–180 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Czech, B. & Oleszczuk, P. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149, 272–278 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Howard, J. L. The quartzite problem revisited. J. Geol. 113(6), 707–713 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Olivier, T. T., Moïse, F., Jackson, S. A. & Francis, N. T. A review on traditional uses, phytochemical and pharmacological profiles, spiritual and economic values, and toxicity of Dacryodes Edulis (G. Don) HJ Lam. J. Drug Deliv. Therap. 6(5), 84–90 (2016).

    Google Scholar 

  • 53.

    Ogunmoyole, T., Kade, I., Johnson, O. & Makun, O. Effect of boiling on the phytochemical constituents and antioxidant properties of African pear Dacryodes edulis seeds in vitro. Afr. J. Biochem. Res. 6(8), 105–114 (2012).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Omoregie, E. S. & Okugbo, O. T. In vitro antioxidant activity and phytochemical screening of methanol extracts of Ficus capensis and Dacryodes edulis leaves. Journal of Pharmacy & Bioresources 11(2), 66–75 (2014).

    Article 

    Google Scholar 

  • 55.

    Niazi, L., Lashanizadegan, A. & Sharififard, H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Clean. Prod. 185, 554–561 (2018).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Klimaviciute, R., Bendoraitiene, J., Rutkaite, R. & Zemaitaitis, A. Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins. J. Hazard. Mater. 181(1–3), 624–632 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Mishra, S., Chakraborty, T. & Matsagar, V. Dynamic characterization of himalayan quartzite using SHPB. Procedia Eng. 191, 2–9 (2017).

    Article 

    Google Scholar 

  • 58.

    Torres, P., Manjate, R., Quaresma, S., Fernandes, H. & Ferreira, J. M. D. F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27(16), 4649–4655 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Amaral, P. M.; Fernandes, J. C.; Rosa, L. G. In A comparison between X-ray diffraction and petrography techniques used to determine the mineralogical composition of granite and comparable hard rocks, Materials science forum, Trans Tech Publ: 2006; pp 1628-1632.

  • 60.

    Hessel, C. M., Henderson, E. J. & Veinot, J. G. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18(26), 6139–6146 (2006).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Xie, P.-P. et al. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 122, 392–398 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Wang, G. et al. Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11(1), 99–110 (2018).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Brunauer, S. & Emmett, P. Chemisorptions of gases on iron synthetic ammonia catalysts1. J. Am. Chem. Soc. 62(7), 1732–1746 (1940).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Xing, Z.; Hébert, R.; Beaucour, A.; Ledésert, B.; Noumowé, A.; Linder, N. In Influence of aggregate’s nature on their instability at elevated temperature, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, RILEM Publications SARL: 2011; pp 149–156.

  • 65.

    Szabó, M. et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–a comprehensive study from pH 2 to 11. Inorg. Chim. Acta 472, 295–301 (2018).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Saygi, K. O., Tuzen, M., Soylak, M. & Elci, L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater. 153(3), 1009–1014 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Shanmugalingam, A. & Murugesan, A. Removal of hexavalent chromium by adsorption on microwave assisted activated carbon prepared from stems of Leucas Aspera. Z. Phys. Chem. 232(4), 489–506 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Belachew, N. & Hinsene, H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci. 10(1), 38 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 69.

    Gaikwad, M. S. & Balomajumder, C. Removal of Cr (VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep. Purif. Technol. 195, 305–313 (2018).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Altundogan, H. S. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 40(3), 1443–1452 (2005).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Demiral, H., Demiral, I., Tümsek, F. & Karabacakoğlu, B. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 144(2), 188–196 (2008).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Ma, M., Lu, Y., Chen, R., Ma, L. & Wang, Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open J. Appl. Sci. 4(05), 275 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Aslani, H., Kosari, T. E., Naseri, S., Nabizadeh, R. & Khazaei, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ. Sci. Pollut. Res. 2, 1–15 (2018).

    Google Scholar 

  • 74.

    Gao, H. et al. Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater. 150(2), 446–452 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Chagas, P. M. B. et al. Nanostructured oxide stabilized by chitosan: Hybrid composite as an adsorbent for the removal of chromium (VI). J. Environ. Chem. Eng. 6(1), 1008–1019 (2018).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Qiu, J. et al. Adsorption of Cr (VI) using silica-based adsorbent prepared by radiation-induced grafting. J. Hazard. Mater. 166(1), 270–276 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Hamza, I. A. A., Martincigh, B. S., Ngila, J. C. & Nyamori, V. O. Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth Parts A/B/C 66, 157–166 (2013).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Liu, Y. & Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61(3), 229–242 (2008).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future