in

Genetic diversity and population structure of razor clam Sinonovacula constricta in Ariake Bay, Japan, revealed using RAD-Seq SNP markers

  • 1.

    Fushimi, H. Production of juvenile marine finfish for stock enhancement in Japan. Aquaculture 200, 33–53. https://doi.org/10.1016/S0044-8486(01)00693-7 (2001).

    Article 

    Google Scholar 

  • 2.

    Masuda, R. & Tsukamoto, K. Stock enhancement in Japan: review and perspective. Bull. Mar. Sci. 62, 337–358. https://www.ingentaconnect.com/content/umrsmas/bullmar/1998/00000062/00000002/art00005 (1998).

  • 3.

    Sekino, M., Saitoh, K., Yamada, T., Hara, M. & Yamashita, Y. Genetic tagging of released Japanese flounder (Paralichthys olivaceus) based on polymorphic DNA markers. Aquaculture 244, 49–61. https://doi.org/10.1016/j.aquaculture.2004.11.006 (2005).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Arnold, W. S. Bivalve enhancement and restoration strategies in Florida, USA. Hydrobiologia 465, 7–19. https://doi.org/10.1023/A:1014596909319 (2001).

    Article 

    Google Scholar 

  • 5.

    Castell, L. L., Naviti, W. & Nguyen, F. Detectability of cryptic juvenile Trochus niloticus Linnaeus in stock enhancement experiments. Aquaculture 144, 91–101. https://doi.org/10.1016/S0044-8486(96)01320-8 (1996).

    Article 

    Google Scholar 

  • 6.

    McCormick, T. B., Herbinson, K., Mill, T. S. & Altick, J. A review of abalone seeding, possible significance and a new seeding device. Bull. Mar. Sci. 55, 680–693. https://www.ingentaconnect.com/content/umrsmas/bullmar/1994/00000055/f0020002/art00035 (1994).

  • 7.

    Zohar, Y. et al. The Chesapeake Bay blue crab (Callinectes sapidus): A multidisciplinary approach to responsible stock replenishment. Rev. Fish. Sci. 16, 24–34. https://doi.org/10.1080/10641260701681623 (2008).

    Article 

    Google Scholar 

  • 8.

    Funge-Smith, S., Briggs, M. & Miao, W. Regional Overview of Fisheries and Aquaculture in Asia and the Pacific 2012 (RAP Publication (FAO), 2012).

    Google Scholar 

  • 9.

    Mao, Y. et al. Chapter 4. Bivalve production in China. In Goods and Services of Marine Bivalves (eds Smaal, A. C. et al.) 51–72 (Springer, 2019).

    Google Scholar 

  • 10.

    Ran, Z. et al. Fatty acid and sterol changes in razor clam Sinonovacula constricta (Lamarck 1818) reared at different salinities. Aquaculture 473, 493–500. https://doi.org/10.1016/j.aquaculture.2017.03.017 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Suzuki, T., Inoue, K. & Ozawa, T. Environmental degradation in Ise and Mikawa Bays after 1960’s as viewed from intertidal molluscan community. Boll. Nagoya Univ. Museum 22, 31–64. https://doi.org/10.18999/bulnum.022.04 (2006).

    Article 

    Google Scholar 

  • 12.

    Nakamura, T. et al. Marine reservoir effect deduced from 14C dates on marine shells and terrestrial remains at archeological sites in Japan. Nucl. Instrum. Methods Phys. Res. B 259, 453–459. https://doi.org/10.1016/j.nimb.2007.01.186 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Ministry of the Environment, Japan. Ariake Sea and Yatsushiro Sea Comprehensive Survey Evaluation Committee Report. https://www.env.go.jp/council/20ari-yatsu/rep061221/all.pdf (2006).

  • 14.

    Ito, S., Eguchi, T. & Kawahara, I. Rearing experiment on planktonic larvae of the JackKnife clam, Sinonovacula constricta. Boll. Saga Prefect. Ariake Fish. Res. Dev. Cent. 20, 49–53. https://agriknowledge.affrc.go.jp/RN/2010813185.pdf (2001).

  • 15.

    Ohkuma, H., Ymagachi, T., Kawahara, I., Eguchi, T. & Ito, S. A study on the development of techniques for mass production of seeds of jackknife clam, Sinonovacula constricta. Boll. Saga Prefect. Ariake Fish. Res. Dev. Cent. 22, 47–54. https://agriknowledge.affrc.go.jp/RN/2030813210.pdf (2004).

  • 16.

    Tsukuda, M. et al. Variation in the Distribution of the JackKnife Clam, Sinonovacula constricta, on the Muddy Tidal flat of Ariake Sound off Saga Prefecture. Boll. Saga Prefect. Ariake Fish. Res. Dev. Cent. 28, 47–49. https://agriknowledge.affrc.go.jp/RN/2010925685.pdf (2017).

  • 17.

    Holman, L. E., de la Garcia, S. D., Onoufriou, A., Hillestad, B. & Johnston, I. A. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture 476, 59–64. https://doi.org/10.1016/j.aquaculture.2017.04.001 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Li, Y. H. & Wang, H. P. Advances of genotyping-by-sequencing in fisheries and aquaculture. Rev. Fish Biol. Fish. 27, 535–559. https://doi.org/10.1007/s11160-017-9473-2 (2017).

    Article 

    Google Scholar 

  • 19.

    Robledo, D., Palaiokostas, C., Bargelloni, L., Martínez, P. & Houston, R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac 10, 670–682. https://doi.org/10.1111/raq.12193 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    You, X., Shan, X. & Shi, Q. Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 526, 735357. https://doi.org/10.1016/j.aquaculture.2020.735357 (2020).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Arthington, A. H. Ecological and genetic impacts of introduced and translocated freshwater fishes in Australia. Can. J. Fish. Aquat. Sci. 48, 33–43. https://doi.org/10.1139/f91-302 (1991).

    Article 

    Google Scholar 

  • 22.

    Habtemariam, B. T., Arias, A., García-Vázquez, E. & Borrell, Y. J. Impacts of supplementation aquaculture on the genetic diversity of wild Ruditapes decussatus from northern Spain. Aquacult. Environ. Interact. 6, 241–254. https://doi.org/10.3354/aei00128 (2015).

    Article 

    Google Scholar 

  • 23.

    Williams, S. L. & Orth, R. J. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries 21, 118–128. https://doi.org/10.2307/1352551 (1998).

    Article 

    Google Scholar 

  • 24.

    Yamakawa, A. Y. & Imai, H. PCR-RFLP typing reveals a new invasion of Taiwanese Meretrix (Bivalvia: Veneridae) to Japan. Aquat. Invasions 8, 407–415. https://doi.org/10.3391/ai.2013.8.4.04 (2013).

    Article 

    Google Scholar 

  • 25.

    Niu, D. H., Feng, B. B., Liu, D. B., Zhong, Y. M., Shen, H. D. & Li, J. L. Significant genetic differentiation among ten populations of the razor clam Sinonovacula constricta along the coast of china revealed by a microsatellite analysis. Zool. Stud. 51, 406–414. http://zoolstud.sinica.edu.tw/Journals/51.3/406.pdf. (2012).

  • 26.

    DeFaveri, J., Shikano, T., Ghani, N. I. A. & Merilä, J. Contrasting population structures in two sympatric fishes in the Baltic Sea basin. Mar. Biol. 159, 1659–1672. https://doi.org/10.1007/s00227-012-1951-4 (2012).

    Article 

    Google Scholar 

  • 27.

    Jeffery, N. W. et al. RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic. Ecol. Evol. 7, 2513–2524. https://doi.org/10.1002/ece3.2872 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Kato, D. et al. Evaluation of the population structure and phylogeography of the Japanese Genji firefly, Luciola cruciata, at the nuclear DNA level using RAD-Seq analysis. Sci. Rep. 10, 1533. https://doi.org/10.1038/s41598-020-58324-9 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Yokota, M., Harada, Y. & Iizuka, M. Genetic drift in a hatchery and the maintenance of genetic diversity in hatchery-wild systems. Fish Sci. 69, 101–109. https://doi.org/10.1046/j.1444-2906.2003.00593.x (2003).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Harada, Y., Yokota, M. & Iizuka, M. Genetic risk of domestication in artificial fish stocking and its possible reduction. Popul. Ecol. 40, 311–324. https://doi.org/10.1007/BF02763463 (1998).

    Article 

    Google Scholar 

  • 31.

    Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A. & Cresko, W. A. SNP discovery and genotyping for evolutionary genetics using RAD sequencing, in: Molecular methods for evolutionary genetics. Methods Mol. Biol. Humana Press 772, 157–178. https://doi.org/10.1007/978-1-61779-228-1_9 (2011).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Rochette, N. C. & Catchen, J. M. Deriving genotypes from RAD-seq short-read data using stacks. Nat. Protoc. 12, 2640–2659. https://doi.org/10.1038/nprot.2017.123 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Ran, Z. et al. Chromosome-level genome assembly of the razor clam Sinonovacula constricta (Lamarck, 1818). Mol. Ecol. Resour. 19, 1647–1658. https://doi.org/10.1111/1755-0998.13086 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv: 1303.3997. https://arxiv.org/abs/1303.3997 (2013).

  • 35.

    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://pubmed.ncbi.nlm.nih.gov/19648217/ (2009).

  • 38.

    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. https://doi.org/10.1086/519795 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Eklund, A. R package beeswarm: the bee swarm plot, an alternative to stripchart. https://cran.r-project.org/web/packages/beeswarm/beeswarm.pdf (2016).

  • 40.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324. https://doi.org/10.1093/bioinformatics/btu530 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Swofford, D. L. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4 (Sinauer Associates, 2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity