Gray, M., Gordon, J. & Brown, E. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 124, 659–673 (2013).
Google Scholar
Gray, M. Valuing geodiversity in an ‘ecosystem services’ context. Scott. Geogr. J. 128, 177–194 (2012).
Google Scholar
Warren, A. & French, J. R. Habitat Conservation: Managing the Physical Environment (Wiley, Hoboken, 2001).
Gordon, J. E., Barron, H. F., Hansom, J. D. & Thomas, M. F. Engaging with geodiversity—Why it matters. Proc. Geol. Assoc. 123, 1–6 (2012).
Google Scholar
Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).
Google Scholar
Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature 448 (Wiley, 2004).
Serrano, E. & Ruiz-Flano, P. Geodiversity. A theoretical and applied concept. Geogr. Helv. Jg 62, 140–147 (2007).
Google Scholar
Comer, P. J. et al. Incorporating geodiversity into conservation decisions. Conserv. Biol. 29, 692–701 (2015).
Google Scholar
Pătru-Stupariu, I. et al. Integrating geo-biodiversity features in the analysis of landscape patterns. Ecol. Indic. 80, 363–375 (2017).
Google Scholar
Chakraborty, A. & Gray, M. A call for mainstreaming geodiversity in nature conservation research and praxis. J. Nat. Conserv. 56, 125862 (2020).
Google Scholar
Poesen, J., Torri, D. & Bunte, K. Effects of rock fragments on soil erosion by water at different spatial scales: A review. CATENA 23, 141–166 (1994).
Google Scholar
Zhang, Y., Zhang, M., Niu, J., Li, H. & Xiao, R. Rock fragments and soil hydrological processes: Significance and progress. CATENA 147, 153–166 (2016).
Google Scholar
Xia, L. et al. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrol. Process. 32, 792–804 (2018).
Google Scholar
Lavee, H. & Poesen, J. W. A. Overland flow generation and continuity on stone-covered soil surfaces. Hydrol. Process. 5, 345–360 (1991).
Google Scholar
Agassi, M. & Levy, G. Stone cover and rain intensity—Effects on infiltration, erosion and water splash. Soil Res. 29, 565–575 (1991).
Google Scholar
Mandal, U. K. et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. Eur. J. Soil Sci. 56, 435–443 (2005).
Google Scholar
Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 52, 59–68 (2001).
Google Scholar
Jury, W. A. & Bellantuoni, B. Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Sci. Soc. Am. J. 40, 505–509 (1976).
Google Scholar
Yuan, C., Lei, T., Mao, L., Liu, H. & Wu, Y. Catena soil surface evaporation processes under mulches of different sized gravel. CATENA 78, 117–121 (2009).
Google Scholar
Poesen, J. & Lavee, H. Rock fragments in top soils: Significance and processes. CATENA 23, 1–28 (1994).
Google Scholar
Yizhaq, H., Stavi, I., Shachak, M. & Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex. 31, 96–103 (2017).
Google Scholar
Stavi, I., Rachmilevitch, S. & Yizhaq, H. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA 176, 372–380 (2019).
Google Scholar
Preisler, Y. et al. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct. Ecol. 33, 901–912 (2019).
Google Scholar
Sauer, T. J. & Logsdon, S. D. Hydraulic and Physical Properties of Stony Soils in a Small Watershed. Soil Sci. Soc. Am. J. 66, 1947–1956 (2002).
Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H. & Sarah, P. Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology 101, 595–606 (2008).
Google Scholar
Ceacero, C. J., Díaz-Hernández, J. L., de Campo, A. D. & Navarro-Cerrillo, R. M. Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil Tillage Res. 197, 104495 (2020).
Google Scholar
Burnett, M. R., August, P. V., Brown, J. H. & Killingbeck, K. T. The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conserv. Biol. 12, 363–370 (2008).
Google Scholar
Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).
Google Scholar
Stavi, I., Rachmilevitch, S. & Yizhaq, H. Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. L. Degrad. Dev. 29, 205–209 (2018).
Google Scholar
Dubinin, V., Stavi, I., Svoray, T., Dorman, M. & Yizhaq, H. Hillslope geodiversity improves the resistance of shrubs to prolonged droughts in semiarid ecosystems. J. Arid Environ. 188, 104462 (2021).
Google Scholar
Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).
Google Scholar
Stavi, I., Rachmilevitch, S., Hjazin, A. & Yizhaq, H. Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surf. Process. Landforms 43, 2808–2817 (2018).
Google Scholar
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).
Google Scholar
Bailey, J. J., Boyd, D. S. & Field, R. Models of upland species’ distributions are improved by accounting for geodiversity. Landscape Ecol. https://doi.org/10.1007/s10980-018-0723-z (2018).
Google Scholar
Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).
Google Scholar
Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).
Google Scholar
Nichols, W. F., Killingbeck, K. T. & August, P. V. The influence biodiversity of geomorphological heterogeneity: II. A landscape perspective. Soc. Conserv. Biol. 12, 371–397 (1998).
Google Scholar
Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 2–3 (2020).
Google Scholar
Evenari, M., Shanan, L., Tadmor, N. & Shkolnik, A. The Negev: The Challenge of a Desert (Harvard University Press, 1982).
Google Scholar
Akttani, H., Trimborn, P. & Ziegler, H. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst. Evol. 206, 187–221 (1997).
Google Scholar
Harley, J. The Biology of Mycorrhiza (Leonard Hill, 1969).
Mejsti, V. K. & Cudlin, P. Mycorrhiza in some plant desert species in Algeria. Plant Soil 71, 363–366 (1983).
Google Scholar
Segoli, M., Ungar, E. D. & Shachak, M. Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology 1, 330–339 (2008).
Google Scholar
Gilad, E., Von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E. Ecosystem engineers: From pattern formation to habitat creation. Phys. Rev. Lett. 93, 098105 (2004).
Google Scholar
Wright, J. P., Jones, C. G., Boeken, B. & Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 94, 815–824 (2006).
Google Scholar
Katra, I., Blumberg, D. G., Lavee, H. & Sarah, P. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology 86, 455–464 (2007).
Google Scholar
Hoffman, O., de Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. 27, 578–586 (2016).
Google Scholar
Shachak, M. et al. Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58, 209–221 (2008).
Google Scholar
Madrigal-González, J., García-Rodríguez, J. A. & Alarcos-Izquierdo, G. Testing general predictions of the stress gradient hypothesis under high inter- and intra-specific nurse shrub variability along a climatic gradient. J. Veg. Sci. 23, 52–61 (2012).
Google Scholar
Boeken, B. & Shachak, M. The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography (Cop.) 21, 63–73 (1998).
Google Scholar
Golodets, C. & Boeken, B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. CATENA 65, 285–291 (2006).
Google Scholar
Boeken, B. & Shachak, M. Desert plant communities in human-made patches-implications for management. Ecol. Appl. 4, 702–716 (1994).
Google Scholar
Hoffman, O., Yizhaq, H. & Boeken, B. Small-scale effects of annual and woody vegetation on sediment displacement under field conditions. CATENA 109, 157–163 (2013).
Google Scholar
Zaady, E., Arbel, S., Barkai, D. & Sarig, S. Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J. Arid Environ. 90, 5–11 (2013).
Google Scholar
Zaady, E., Stavi, I. & Yizhaq, H. Hillslope geodiversity effects on properties and composition of biological soil crusts in drylands. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.13097 (2021).
Google Scholar
Feinbrun-Dothan, N. & Danin, A. Analytical Flora of Eretz-Israel (Cana Publishing Ltd, 1991).
Solovchenko, A., Merzlyak, M. N., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. Coordinated carotenoid and lipid syntheses induced in parietochloris incisa (chlorophyta, trebouxiophyceae) mutant deficient in δ5 desaturase by nitrogen starvation and high light. J. Phycol. 46, 763–772 (2010).
Google Scholar
Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Google Scholar
Simpson, E. Measurement of diversity. Nature 163, 688 (1949).
Google Scholar
R Core Team. R: A language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).
Richerson, P. J. & Lum, K. Patterns of plant species diversity in California: Relation to weather and topography. Am. Nat. 116, 504–536 (1980).
Google Scholar
Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).
Google Scholar
Alahuhta, J. et al. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 91, 47–56 (2018).
Google Scholar
Zarnetske, P. L. et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Wiley Online Libr. 28, 548–556 (2019).
Schrodt, F. et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. U. S. A. 116, 16155–161658 (2019).
Google Scholar
Read, Q. D. et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Wiley Online Libr. 29, 696–710 (2020).
Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).
Google Scholar
Knudson, C., Kay, K. & Fisher, S. Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Change 8, 678–685 (2018).
Google Scholar
Beier, P., Hunter, M. L. & Anderson, M. Special section: Conserving nature’s stage. Conserv. Biol. 29, 613–617 (2015).
Google Scholar
Dubinin, V., Svoray, T., Stavi, I. & Yizhaq, H. Using LANDSAT 8 and VENµS data to study the effect of geodiversity on soil moisture dynamics in a semiarid shrubland. Remote Sens. 12, 3377 (2020).
Google Scholar
Renne, R. R. et al. Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology 100, e02889 (2019).
Google Scholar
Gutterman, Y., Golan, T. & Garsani, M. Porcupine diggings as a unique ecological system in a desert environment. Oecologia 85, 122–127 (1990).
Google Scholar
Armas, C., Pugnaire, F. I. & Sala, O. E. Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe (Argentina). J. Arid Environ. 72, 1552–1561 (2008).
Google Scholar
Pickett, S. & White, P. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985). https://doi.org/10.1016/C2009-0-02952-3.
Google Scholar
Segoli, M., Ungar, E. D., Giladi, I., Arnon, A. & Shachak, M. Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landsc. Ecol. 27, 899–910 (2012).
Google Scholar
Rodríguez, F., Mayor, Á. G., Rietkerk, M. & Bautista, S. A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecol. Indic. 94, 512–519 (2018).
Google Scholar
Zelnik, Y. R., Kinast, S., Yizhaq, H., Bel, G. & Meron, E. Regime shifts in models of dryland vegetation. Philos. Trans. R. Soc. A https://doi.org/10.1098/rsta.2012.0358 (2013).
Google Scholar
Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. PNAS 103, 1342–1346 (2006).
Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).
Google Scholar
Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).
Google Scholar
Stavi, I., Yizhaq, H., Szitenberg, A. & Zaady, E. Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: Insights from the Israeli Negev. Curr. Opin. Environ. Sustain. 50, 129–137 (2021).
Google Scholar
Loarie, S. R. et al. Climate change and the future of California’s endemic flora. PLoS ONE 3, 2502 (2008).
Google Scholar
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
Google Scholar
Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).
Google Scholar
Correa-Metrio, A., Meave, J. A., Lozano-García, S. & Bush, M. B. Environmental determinism and neutrality in vegetation at millennial time scales. J. Veg. Sci. 25, 627–635 (2014).
Google Scholar
Baumgartner, J., Esperon-Rodriguez, M. & Beaumont, L. Identifying in situ climate refugia for plant species. Ecography (Cop.) 41, 1850–1863 (2018).
Google Scholar
Alahuhta, J. et al. The Role of Geodiversity in Providing Ecosystem Services at Broad Scales (Elsevier, 2018).
Google Scholar
Parks, K. E. & Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 19, 2751–2766 (2010).
Google Scholar
Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
Google Scholar
Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).
Google Scholar
Source: Ecology - nature.com