Scholik, A. R. & Yan, H. Y. Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. . Environ. Biol. Fish. 63, 203–209. https://doi.org/10.1023/A:1014266531390 (2002).
Google Scholar
Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544. https://doi.org/10.1038/ncomms10544 (2016).
Google Scholar
Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends. Ecol. Evol. 25, 419–427. https://doi.org/10.1016/j.tree.2010.04.005 (2010).
Google Scholar
Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051. https://doi.org/10.1098/rsbl.2014.1051 (2015).
Google Scholar
Baker, C. F. & Montgomery, J. C. Sensory deficits induced by cadmium in banded kokopu, Galaxias fasciatus, juveniles. Environ. Biol. Fish. 62, 455–464. https://doi.org/10.1023/A:1012290912326 (2001).
Google Scholar
O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).
Google Scholar
Tierney, K. B., Sampson, J. L., Ross, P. S., Sekela, M. A. & Kennedy, C. J. Salmon olfaction is impaired by an environmentally realistic pesticide mixture. Environ. Sci. Tech. 42, 4996–5001. https://doi.org/10.1021/es800240u (2008).
Google Scholar
Ward Ashley, J. W., Duff Alison, J., Horsfall Jennifer, S. & Currie, S. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc. R Soc. B Biol. Sci. 275, 101–105. https://doi.org/10.1098/rspb.2007.1283 (2008).
Google Scholar
Besson, M. et al. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep. 7, 9165. https://doi.org/10.1038/s41598-017-09381-0 (2017).
Google Scholar
Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112. https://doi.org/10.1242/jeb.004317 (2007).
Google Scholar
Bruintjes, R. et al. Rapid recovery following short-term acoustic disturbance in two fish species. R. Soc. Open Sci. 3, 150686. https://doi.org/10.1098/rsos.150686 (2016).
Google Scholar
Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Chang. Biol. 22, 3349–3360. https://doi.org/10.1111/gcb.13352 (2016).
Google Scholar
Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).
Google Scholar
Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. https://doi.org/10.1098/rsbl.2011.0293 (2011).
Google Scholar
van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640. https://doi.org/10.1007/s10682-010-9450-x (2011).
Google Scholar
Wysocki, L. E., Dittami, J. P. & Ladich, F. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 128, 501–508. https://doi.org/10.1016/j.biocon.2005.10.020 (2006).
Google Scholar
Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196. https://doi.org/10.1016/S0065-2881(06)51003-X (2006).
Google Scholar
Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. 130, 1 (2011).
Collin, S. P. & Hart, N. S. Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integr. Zool. 10, 15–28. https://doi.org/10.1111/1749-4877.12093 (2015).
Google Scholar
Brodie, J. E. et al. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar Pollut Bull 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).
Google Scholar
Marshall, N. J. in Animal Signals. Signalling and signal design in animal communication (eds Y. Espmark, Y. Amundsen, & G. Rosenqvist) 83–120 (Tapir Academic Press, 2000).
Marshall, J. Vision and lack of vision in the ocean. Curr. Biol. 27, R494–R502. https://doi.org/10.1016/j.cub.2017.03.012 (2017).
Google Scholar
Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. 106, 31–42. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).
Google Scholar
Collier, C., Waycott, M. & Ospina, A. G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 65, 342–354. https://doi.org/10.1016/j.marpolbul.2011.06.017 (2012).
Google Scholar
De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850. https://doi.org/10.1890/08-2023.1 (2010).
Google Scholar
Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).
Google Scholar
Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers, S. G. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front. Mar. Sci. 4, 1–13. https://doi.org/10.3389/fmars.2017.00224 (2017).
Google Scholar
Schartau, J. M., Sjögreen, B., Gagnon, Y. L. & Kröger, R. H. H. Optical plasticity in the crystalline lenses of the cichlid fish Aequidens pulcher. Curr. Biol. 19, 122–126. https://doi.org/10.1016/j.cub.2008.11.062 (2009).
Google Scholar
Kröger, R. H. H., Braun, S. C. & Wagner, H.-J. Rearing in different photic and chromatic environments modifies spectral responses of cone horizontal cells in adult fish retina. Vis. Neuro Sci. 18, 857–864. https://doi.org/10.1017/S0952523801186025 (2001).
Google Scholar
Kröger, R. H. H., Knoblauch, B. & Wagner, H.-J. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206, 1643–1648. https://doi.org/10.1242/jeb.00337 (2003).
Google Scholar
Borner, K. K. et al. Turbidity affects social dynamics in Trinidadian guppies. Behav. Ecol. Sociobiol. 69, 645–651. https://doi.org/10.1007/s00265-015-1875-3 (2015).
Google Scholar
Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies Poecilia reticulata. . Anim. Behav. 103, 179–185. https://doi.org/10.1016/j.anbehav.2015.02.027 (2015).
Google Scholar
Johansen, J. L. & Jones, G. P. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes. Ecol. Appl. 23, 1504–1517. https://doi.org/10.1890/12-0704.1 (2013).
Google Scholar
Chamberlain, A. C. & Ioannou, C. C. Turbidity increases risk perception but constrains collective behaviour during foraging by fish shoals. Anim. Behav. 156, 129–138. https://doi.org/10.1016/j.anbehav.2019.08.012 (2019).
Google Scholar
Gregory, R. S. Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50, 241–246. https://doi.org/10.1139/f93-027 (1993).
Google Scholar
Hess, S. et al. Enhanced fast-start performance and anti-predator behaviour in a coral reef fish in response to suspended sediment exposure. Coral Reefs 38, 103–108. https://doi.org/10.1007/s00338-018-01757-6 (2019).
Google Scholar
Miner, J. G. & Stein, R. A. Detection of predators and habitat choice by small Bluegills: Effects of turbidity and alternative prey. T Am. Fish. Soc. 125, 97–103. https://doi.org/10.1577/1548-8659(1996)125%3c0097:DOPAHC%3e2.3.CO;2 (1996).
Google Scholar
Utne-Palm, A. C. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Phys. 35, 111–128. https://doi.org/10.1080/10236240290025644 (2002).
Google Scholar
Fiksen, Ø., Aksnes, D., Flyum, H. & M. & Giske, J. ,. The influence of turbidity on growth and survival of fish larvae: A numerical analysis. Hydrobiologia 484, 49–59. https://doi.org/10.1023/A:1021396719733 (2002).
Google Scholar
Gregory, R. S. & Levings, C. D. The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp, to predation by adult cutthroat trout, O. clarkii. Environ Biol Fish 47, 279–288. https://doi.org/10.1007/BF00000500 (1996).
Google Scholar
Wenger, A. S., McCormick, M. I., McLeod, I. M. & Jones, G. P. Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32, 369–374. https://doi.org/10.1007/s00338-012-0991-z (2013).
Google Scholar
Asaeda, T., Kyung Park, B. & Manatunge, J. Characteristics of reaction field and the reactive distance of a planktivore, Pseudorasbora parva (Cyprinidae), in various environmental conditions. Hydrobiologia 489, 29–43. https://doi.org/10.1023/A:1023298823106 (2002).
Google Scholar
Barrett, J. C., Grossman, G. D. & Rosenfeld, J. Turbidity-induced changes in reactive distance of rainbow trout. Trans. Am. Fish. Soc. 121, 437–443. https://doi.org/10.1577/1548-8659(1992)121%3c0437:TICIRD%3e2.3.CO;2 (1992).
Google Scholar
Sweka, J. A. & Hartman, K. J. Reduction of reactive distance and foraging success in smallmouth bass, Micropterus dolomieu, exposed to elevated turbidity levels. Environ. Biol. Fish. 67, 341–347. https://doi.org/10.1023/A:1025835031366 (2003).
Google Scholar
Suriyampola, P. S., Cacéres, J. & Martins, E. P. Effects of short-term turbidity on sensory preference and behaviour of adult fish. Anim. Behav. 146, 105–111. https://doi.org/10.1016/j.anbehav.2018.10.014 (2018).
Google Scholar
De Robertis, A., Ryer, C. H., Veloza, A. & Brodeur, R. D. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can. J. Fish. Aquat. Sci. 60, 1517–1526. https://doi.org/10.1139/f03-123 (2003).
Google Scholar
Huenemann, T. W., Dibble, E. D. & Fleming, J. P. Influence of turbidity on the foraging of largemouth bass. Trans. Am. Fish. Soc. 141, 107–111. https://doi.org/10.1080/00028487.2011.651554 (2012).
Google Scholar
Sekhar, M. A., Singh, R., Bhat, A. & Jain, M. Feeding in murky waters: acclimatization and landmarks improve foraging efficiency of zebrafish (Danio rerio) in turbid waters. Biol. Lett. 15, 20190289. https://doi.org/10.1098/rsbl.2019.0289 (2019).
Google Scholar
Wenger, A. S., Johansen, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48. https://doi.org/10.1016/j.jembe.2012.06.004 (2012).
Google Scholar
Wenger, A. S. et al. Suspended sediment prolongs larval development in a coral reef fish. J. Exp. Biol. 217, 1122–1128. https://doi.org/10.1242/jeb.094409 (2014).
Google Scholar
Ehlman, S. M., Sandkam, B. A., Breden, F. & Sih, A. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. J. Comput. Physiol. 201, 1125–1135. https://doi.org/10.1007/s00359-015-1041-4 (2015).
Google Scholar
Hazelton, P. D. & Grossman, G. D. Turbidity, velocity and interspecific interactions affect foraging behaviour of rosyside dace (Clinostomus funduloides) and yellowfin shiners (Notropis lutippinis). Ecol. Freshw. Fish 18, 427–436. https://doi.org/10.1111/j.1600-0633.2009.00359.x (2009).
Google Scholar
Hecht, T. & van der Lingen, C. D. Turbidity-induced changes in feeding strategies of fish in estuaries. S. Afr. J. Zool. 27, 95–107. https://doi.org/10.1080/02541858.1992.11448269 (1992).
Google Scholar
Sweka, J. A. & Hartman, K. J. Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Can. J. Fish. Aquat. Sci. 58, 386–393. https://doi.org/10.1139/f00-260 (2001).
Google Scholar
Burt de Perera, T. & Macías Garcia, C. Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109, 341–350. https://doi.org/10.1046/j.1439-0310.2003.00876.x (2003).
Google Scholar
Warburton, K. The use of local landmarks by foraging goldfish. Anim. Behav. 40, 500–505. https://doi.org/10.1016/s0003-3472(05)80530-5 (1990).
Google Scholar
Burt de Perera, T. & Guilford, T. C. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392. https://doi.org/10.1111/j.1095-8649.2008.01804.x (2008).
Google Scholar
Hughes, R. N. & Blight, C. M. Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Anim. Behav. 59, 613–621. https://doi.org/10.1006/anbe.1999.1351 (2000).
Google Scholar
Huntingford, F. A. & Wright, P. J. How sticklebacks learn to avoid dangerous feeding patches. Behav. Process. 19, 181–189. https://doi.org/10.1016/0376-6357(89)90040-5 (1989).
Google Scholar
Reese, E. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environ. Biol. Fish. 25, 79–86. https://doi.org/10.1007/bf00002202 (1989).
Google Scholar
Silveira, M. M., Oliveira, J. J. & Luchiari, A. C. Dusky damselfish Stegastes fuscus relational learning: evidences from associative and spatial tasks. J. Fish. Biol. 86, 1109–1120. https://doi.org/10.1111/jfb.12618 (2015).
Google Scholar
Cyrus, D. P. & Blaber, S. J. M. Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuar. Coast Shelf. S 35, 545–563. https://doi.org/10.1016/S0272-7714(05)80038-1 (1992).
Google Scholar
Macdonald, R. K., Ridd, P. V., Whinney, J. C., Larcombe, P. & Neil, D. T. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef. Mar. Pollut. Bull. 74, 82–94. https://doi.org/10.1016/j.marpolbul.2013.07.026 (2013).
Google Scholar
Wenger, A. S. et al. A critical analysis of the direct effects of dredging on fish. Fish Fish 18, 967–985. https://doi.org/10.1111/faf.12218 (2017).
Google Scholar
Wenger, A. S. & McCormick, M. I. Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Mar. Pollut. Bull. 70, 73–80. https://doi.org/10.1016/j.marpolbul.2013.02.014 (2013).
Google Scholar
Gardner, M. B. Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62, 571–578. https://doi.org/10.2307/1937723 (1981).
Google Scholar
Shoup, D. E. & Wahl, D. H. The effects of turbidity on prey selection by piscivorous largemouth bass. Trans. Am. Fish. Soc. 138, 1018–1027. https://doi.org/10.1577/T09-015.1 (2009).
Google Scholar
Cheung, A., Zhang, S., Stricker, C. & Srinivasan, M. V. Animal navigation: the difficulty of moving in a straight line. Biol. Cybern. 97, 47–61. https://doi.org/10.1007/s00422-007-0158-0 (2007).
Google Scholar
McLean, D. J. & Skowron Volpani, M. A. trajr: An R package for characterisation of animal trajectories. Ethology 124, 40–448. https://doi.org/10.1111/eth.12739 (2018).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
jtools: Analysis and presentation of social scientific data v. R package version 2.0.1 (2019).
Gradall, K. S. & Swenson, W. A. Responses of brook trout and creek chubs to turbidity. Trans. Am. Fish. Soc. 111, 392–395. https://doi.org/10.1577/1548-8659(1982)111%3c392:ROBTAC%3e2.0.CO;2 (1982).
Google Scholar
Berg, L. & Northcote, T. G. Changes in territorial, gill-flaring, and feeding behavior in juvenile Coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Can. J. Fish. Aquat. Sci. 42, 1410–1417. https://doi.org/10.1139/f85-176 (1985).
Google Scholar
Paris, C. B. et al. Reef odor: A wake up call for navigation in reef fish larvae. PLoS ONE 8, e72808. https://doi.org/10.1371/journal.pone.0072808 (2013).
Google Scholar
Siebeck, U. E., Parker, A. N., Sprenger, D., Mathger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).
Google Scholar
Cheney, K. L., Grutter, A. S., Blomberg, S. P. & Marshall, N. J. Blue and yellow signal cleaning behavior in Coral Reef Fishes. Curr. Biol. 19, 1283–1287. https://doi.org/10.1016/j.cub.2009.06.028 (2009).
Google Scholar
Brown, C. & Braithwaite, V. A. Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim. Behav. 68, 1325–1329. https://doi.org/10.1016/j.anbehav.2004.04.004 (2004).
Google Scholar
Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Annu. Rev. Mar. Sci. 9, 445–468. https://doi.org/10.1146/annurev-marine-010816-060551 (2017).
Google Scholar
Source: Ecology - nature.com