in

Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

  • 1.

    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).

    Google Scholar 

  • 2.

    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).

    Google Scholar 

  • 4.

    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

  • 5.

    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

  • 7.

    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

  • 8.

    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

  • 9.

    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).

    Article  Google Scholar 

  • 10.

    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).

    CAS  Article  Google Scholar 

  • 12.

    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).

    CAS  Article  Google Scholar 

  • 15.

    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).

    Article  Google Scholar 

  • 18.

    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).

    Article  Google Scholar 

  • 19.

    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

  • 21.

    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).

    Article  Google Scholar 

  • 23.

    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).

    Google Scholar 

  • 25.

    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).

    Article  Google Scholar 

  • 26.

    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).

    CAS  Article  Google Scholar 

  • 28.

    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).

    Article  Google Scholar 

  • 29.

    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).

    Article  Google Scholar 

  • 34.

    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).

    Article  PubMed  Google Scholar 

  • 35.

    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).

    Article  Google Scholar 

  • 36.

    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).

    Article  Google Scholar 

  • 39.

    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).

    Article  Google Scholar 

  • 42.

    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).

    CAS  Article  Google Scholar 

  • 43.

    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).

    Article  Google Scholar 

  • 44.

    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).

    CAS  Article  Google Scholar 

  • 45.

    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).

    Article  Google Scholar 

  • 47.

    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).

    Article  Google Scholar 

  • 48.

    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).

    CAS  Article  Google Scholar 

  • 49.

    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Clare Balboni on environmental economics

    Researchers improve efficiency of next-generation solar cell material