Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).
Google Scholar
Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).
Google Scholar
Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
Google Scholar
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
Google Scholar
Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 254, 244–254 (2018).
Google Scholar
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
Google Scholar
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220 (2016).
Google Scholar
Gonzalez-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).
Google Scholar
Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Essl, F. et al. Drivers of future alien species impacts: An expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).
Google Scholar
Laurino, D., Lioy, S., Carisio, L., Manino, A. & Porporato, M. Vespa velutina: An alien driver of honey bee colony losses. Diversity 12, 5 (2020).
Google Scholar
Monceau, K., Bonnard, O. & Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2013).
Google Scholar
Rome, Q. et al. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J. Appl. Entomol. 139, 771–782 (2015).
Google Scholar
Monceau, K. & Thiery, D. Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci. 24, 663–674 (2017).
Google Scholar
Snyder, W. E. & Evans, E. W. Ecological effects of invasive arthropod generalist predators. Annu. Rev. Ecol. Evol. Syst. 37, 95–122 (2006).
Google Scholar
Villemant, C. et al. Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. In Proceedings of the Journée Scientifique Apicole (eds Barbançon, J.-M. & L’Hostis, M.) 3–12 (ONIRIS-FNOSAD, 2011).
Monceau, K. & Thiery, D. Vespa velutina: Current situation and perspectives (Atti Accademia Nazionale Italiana di Entomologia, 2017).
Requier, F. et al. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 92, 567–578 (2019).
Google Scholar
Rome, Q. et al. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. (N.S.). 57, 1–11. https://doi.org/10.1080/00379271.2020.1867005 (2021).
Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).
Google Scholar
Maside, X. et al. Population genetics of Nosema apis and Nosema ceranae: One host (Apis mellifera) and two different histories. PLoS One 10, e0145609 (2015).
Google Scholar
Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).
Google Scholar
Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. Biol. Sci. 282, 20151371 (2015).
Google Scholar
Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).
Google Scholar
Gómez-Moracho, T. et al. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect. Genet. Evol. 31, 87–94 (2015).
Google Scholar
Higes, M., Martin, R. & Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93–95 (2006).
Google Scholar
Klee, J. et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10 (2007).
Google Scholar
Otterstatter, M. C. & Thomson, J. D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?. PLoS One 3, e2771 (2008).
Google Scholar
Graystock, P., Goulson, D. & Hughes, W. O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).
Google Scholar
Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).
Google Scholar
Bartolomé, C. et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J. Invertebr. Pathol. 154, 37–41 (2018).
Google Scholar
Bartolomé, C. et al. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ. Microbiol. 23, 478–483 (2020).
Google Scholar
Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).
Google Scholar
Goulson, D. & Hughes, W. O. H. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191, 10–19 (2015).
Google Scholar
Burdon, J. & Chilvers, G. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20, 143–166 (1982).
Google Scholar
Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542 (2015).
Google Scholar
Borovkov, K., Day, R. & Rice, T. High host density favors greater virulence: A model of parasite–host dynamics based on multi-type branching processes. J. Math. Biol. 66, 1123–1153 (2013).
Google Scholar
Darrouzet, E., Gévar, J. & Dupont, S. A scientific note about a parasitoid that can parasitize the yellow-legged hornet, Vespa velutina nigrithorax, Europe. Apidologie 46, 130–132 (2014).
Google Scholar
Villemant, C. et al. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France. PeerJ 3, e947 (2015).
Google Scholar
Poidatz, J., López Plantey, R. & Thiéry, D. Indigenous strains of Beauveria and Metharizium as potential biological control agents against the invasive hornet Vespa velutina. J. Invertebr. Pathol. 153, 180–185 (2018).
Google Scholar
Dalmon, A. et al. Viruses in the Invasive Hornet Vespa velutina. Viruses 11, 1041 (2019).
Google Scholar
Marie-Pierre Chauzat et al. First detections of honey bee pathogens in nest of the Asian hornet (Vespa velutina) collected in France. CIHEAM Watch Letter 33 (2015).
Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 10091 (2019).
Google Scholar
Yañez, O., Zheng, H.-Q., Hu, F. L., Neuman, P. & Dietemann, V. A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina. Apidologie 43, 587–589 (2012).
Google Scholar
Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 42, 49–61 (2012).
Google Scholar
Tokarev, Y. S. et al. Redefinition of Nosema pyrausta (Perezia pyraustae Paillot 1927) basing upon ultrastructural and molecular phylogenetic studies. Parasitol. Res. 114, 759–761 (2015).
Google Scholar
Goulson, D., Whitehorn, P. & Fowley, M. Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol. Entomol. 37, 83–89 (2012).
Google Scholar
Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173 (2017).
Google Scholar
Jabal-Uriel, C. et al. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 15, 3 (2017).
Google Scholar
Meana, A. et al. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span. J. Agric. Res. 15, e0501 (2017).
Google Scholar
Cavigli, I. et al. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 47, 251–266 (2016).
Google Scholar
Bartolomé, C. et al. Longitudinal analysis on parasite diversity in honeybee colonies: New taxa, high frequency of mixed infections and seasonal patterns of variation. Sci. Rep. 10, 10454 (2020).
Google Scholar
Ravoet, J. et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8, e72443 (2013).
Google Scholar
Arbulo, N. et al. High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J. Invertebr. Pathol. 130, 165–168 (2015).
Google Scholar
Plischuk, S. et al. Pathogens, parasites, and parasitoids associated with bumble bees (Bombus spp.) from Uruguay. Apidologie 48, 298–310 (2017).
Google Scholar
Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14, e0213171 (2019).
Google Scholar
Michalczyk, M., Bancerz-Kisiel, A. & Sokół, R. Lotmaria passim as third parasite gastrointestinal tract of honey bees living in tree trunk. J. Apic. Sci. 64, 143–151 (2020).
Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).
Google Scholar
Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).
Google Scholar
Rose, E. A. F., Harris, R. J. & Glare, T. R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 26, 179–190 (1999).
Google Scholar
Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, Europe. Biol. Invasions 17, 2357–2371 (2015).
Google Scholar
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).
Google Scholar
Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).
Google Scholar
Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).
Google Scholar
Pusceddu, M., Mura, A., Floris, I. & Satta, A. Feeding strategies and intraspecific competition in German yellowjacket (Vespula germanica). PLoS One 13, e0206301 (2018).
Google Scholar
Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem. Environ. Biol. Sci. 3, 444–448 (2015).
Barbet-Massin, M. et al. Climate change increases the risk of invasion by the Yellow-legged hornet. Biol. Conserv. 157, 4–10 (2013).
Google Scholar
Barbet-Massin, M., Salles, J.-M. & Courchamp, F. The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55, 11–25 (2020).
Google Scholar
Rodríguez-Lado, L. velutina | Visor. Monitorización da distribución de Vespa velutina. http://webs-gis.cesga.es/velutina/ (2017).
Robinet, C., Suppo, C. & Darrouzet, E. Rapid spread of the invasive yellow-legged hornet in France: The role of human-mediated dispersal and the effects of control measures. J. Appl. Ecol. 54, 205–215 (2017).
Google Scholar
Rojas-Nossa, S. V. & Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions 22, 2609–2618 (2020).
Google Scholar
Ferreira-Golpe, M., Garcia-Arias, A. I. & Pérez-Fra, M. M. Costes de la lucha contra la especie invasora Vespa velutina soportados por los apicultores en la provincia de A Coruña. in XII Congreso Iberoamericano de Estudios Rurales. Territorios Globales, Ruralidades Diversas 294–297 (2019).
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
Google Scholar
Civitello, D. J. et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. 112, 8667–8671 (2015).
Google Scholar
Ostfeld, R. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722-728 (2000).
Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 115, 7979–7984 (2018).
Google Scholar
Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLoS Pathog. 9, e1003209 (2013).
Google Scholar
Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. 108, 18732–18736 (2011).
Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Google Scholar
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).
Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
Google Scholar
Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29, 151–154 (1970).
Google Scholar
Source: Ecology - nature.com