in

Identification of pathogens in the invasive hornet Vespa velutina and in native Hymenoptera (Apidae, Vespidae) from SW-Europe

  • 1.

    Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).

    Article 

    Google Scholar 

  • 7.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 254, 244–254 (2018).

    Article 

    Google Scholar 

  • 9.

    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Article 

    Google Scholar 

  • 10.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Gonzalez-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 14.

    Essl, F. et al. Drivers of future alien species impacts: An expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Laurino, D., Lioy, S., Carisio, L., Manino, A. & Porporato, M. Vespa velutina: An alien driver of honey bee colony losses. Diversity 12, 5 (2020).

    Article 

    Google Scholar 

  • 16.

    Monceau, K., Bonnard, O. & Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2013).

    Article 

    Google Scholar 

  • 17.

    Rome, Q. et al. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J. Appl. Entomol. 139, 771–782 (2015).

    Article 

    Google Scholar 

  • 18.

    Monceau, K. & Thiery, D. Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci. 24, 663–674 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Snyder, W. E. & Evans, E. W. Ecological effects of invasive arthropod generalist predators. Annu. Rev. Ecol. Evol. Syst. 37, 95–122 (2006).

    Article 

    Google Scholar 

  • 20.

    Villemant, C. et al. Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. In Proceedings of the Journée Scientifique Apicole (eds Barbançon, J.-M. & L’Hostis, M.) 3–12 (ONIRIS-FNOSAD, 2011).

    Google Scholar 

  • 21.

    Monceau, K. & Thiery, D. Vespa velutina: Current situation and perspectives (Atti Accademia Nazionale Italiana di Entomologia, 2017).

    Google Scholar 

  • 22.

    Requier, F. et al. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 92, 567–578 (2019).

    Article 

    Google Scholar 

  • 23.

    Rome, Q. et al. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. (N.S.). 57, 1–11. https://doi.org/10.1080/00379271.2020.1867005 (2021).

  • 24.

    Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Maside, X. et al. Population genetics of Nosema apis and Nosema ceranae: One host (Apis mellifera) and two different histories. PLoS One 10, e0145609 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. Biol. Sci. 282, 20151371 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Gómez-Moracho, T. et al. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect. Genet. Evol. 31, 87–94 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Higes, M., Martin, R. & Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93–95 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Klee, J. et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Otterstatter, M. C. & Thomson, J. D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?. PLoS One 3, e2771 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Graystock, P., Goulson, D. & Hughes, W. O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Bartolomé, C. et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J. Invertebr. Pathol. 154, 37–41 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 36.

    Bartolomé, C. et al. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ. Microbiol. 23, 478–483 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Goulson, D. & Hughes, W. O. H. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191, 10–19 (2015).

    Article 

    Google Scholar 

  • 39.

    Burdon, J. & Chilvers, G. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20, 143–166 (1982).

    Article 

    Google Scholar 

  • 40.

    Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Borovkov, K., Day, R. & Rice, T. High host density favors greater virulence: A model of parasite–host dynamics based on multi-type branching processes. J. Math. Biol. 66, 1123–1153 (2013).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 42.

    Darrouzet, E., Gévar, J. & Dupont, S. A scientific note about a parasitoid that can parasitize the yellow-legged hornet, Vespa velutina nigrithorax, Europe. Apidologie 46, 130–132 (2014).

    Article 

    Google Scholar 

  • 43.

    Villemant, C. et al. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France. PeerJ 3, e947 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Poidatz, J., López Plantey, R. & Thiéry, D. Indigenous strains of Beauveria and Metharizium as potential biological control agents against the invasive hornet Vespa velutina. J. Invertebr. Pathol. 153, 180–185 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Dalmon, A. et al. Viruses in the Invasive Hornet Vespa velutina. Viruses 11, 1041 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Marie-Pierre Chauzat et al. First detections of honey bee pathogens in nest of the Asian hornet (Vespa velutina) collected in France. CIHEAM Watch Letter 33 (2015).

  • 47.

    Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 10091 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Yañez, O., Zheng, H.-Q., Hu, F. L., Neuman, P. & Dietemann, V. A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina. Apidologie 43, 587–589 (2012).

    Article 

    Google Scholar 

  • 49.

    Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 42, 49–61 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Tokarev, Y. S. et al. Redefinition of Nosema pyrausta (Perezia pyraustae Paillot 1927) basing upon ultrastructural and molecular phylogenetic studies. Parasitol. Res. 114, 759–761 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Goulson, D., Whitehorn, P. & Fowley, M. Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol. Entomol. 37, 83–89 (2012).

    Article 

    Google Scholar 

  • 52.

    Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Jabal-Uriel, C. et al. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 15, 3 (2017).

    Article 

    Google Scholar 

  • 54.

    Meana, A. et al. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span. J. Agric. Res. 15, e0501 (2017).

    Article 

    Google Scholar 

  • 55.

    Cavigli, I. et al. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 47, 251–266 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    Bartolomé, C. et al. Longitudinal analysis on parasite diversity in honeybee colonies: New taxa, high frequency of mixed infections and seasonal patterns of variation. Sci. Rep. 10, 10454 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Ravoet, J. et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8, e72443 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Arbulo, N. et al. High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J. Invertebr. Pathol. 130, 165–168 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Plischuk, S. et al. Pathogens, parasites, and parasitoids associated with bumble bees (Bombus spp.) from Uruguay. Apidologie 48, 298–310 (2017).

    Article 

    Google Scholar 

  • 60.

    Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14, e0213171 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Michalczyk, M., Bancerz-Kisiel, A. & Sokół, R. Lotmaria passim as third parasite gastrointestinal tract of honey bees living in tree trunk. J. Apic. Sci. 64, 143–151 (2020).

    Google Scholar 

  • 62.

    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Rose, E. A. F., Harris, R. J. & Glare, T. R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 26, 179–190 (1999).

    Article 

    Google Scholar 

  • 65.

    Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, Europe. Biol. Invasions 17, 2357–2371 (2015).

    Article 

    Google Scholar 

  • 66.

    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Pusceddu, M., Mura, A., Floris, I. & Satta, A. Feeding strategies and intraspecific competition in German yellowjacket (Vespula germanica). PLoS One 13, e0206301 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem. Environ. Biol. Sci. 3, 444–448 (2015).

    Google Scholar 

  • 71.

    Barbet-Massin, M. et al. Climate change increases the risk of invasion by the Yellow-legged hornet. Biol. Conserv. 157, 4–10 (2013).

    Article 

    Google Scholar 

  • 72.

    Barbet-Massin, M., Salles, J.-M. & Courchamp, F. The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55, 11–25 (2020).

    Article 

    Google Scholar 

  • 73.

    Rodríguez-Lado, L. velutina | Visor. Monitorización da distribución de Vespa velutina. http://webs-gis.cesga.es/velutina/ (2017).

  • 74.

    Robinet, C., Suppo, C. & Darrouzet, E. Rapid spread of the invasive yellow-legged hornet in France: The role of human-mediated dispersal and the effects of control measures. J. Appl. Ecol. 54, 205–215 (2017).

    Article 

    Google Scholar 

  • 75.

    Rojas-Nossa, S. V. & Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions 22, 2609–2618 (2020).

    Article 

    Google Scholar 

  • 76.

    Ferreira-Golpe, M., Garcia-Arias, A. I. & Pérez-Fra, M. M. Costes de la lucha contra la especie invasora Vespa velutina soportados por los apicultores en la provincia de A Coruña. in XII Congreso Iberoamericano de Estudios Rurales. Territorios Globales, Ruralidades Diversas 294–297 (2019).

  • 77.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Civitello, D. J. et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. 112, 8667–8671 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Ostfeld, R. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722-728 (2000).

  • 80.

    Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 115, 7979–7984 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLoS Pathog. 9, e1003209 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. 108, 18732–18736 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • 85.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29, 151–154 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy