in

Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study

  • 1.

    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331), 543–547 (2011).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134(2), e362–372 (2014).

    Article  Google Scholar 

  • 3.

    Chichlowski, M., De Lartigue, G., German, J. B., Raybould, H. E. & Mills, D. A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 55(3), 321–332 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Lewis, Z. T. & Mills, D. A. Differential establishment of bifidobacteria in the breastfed infant Ggut. Nestle Nutr. Inst. Workshop Series. 88, 149–159 (2017).

    Article  Google Scholar 

  • 5.

    Tannock, G. W., Lee, P. S., Wong, K. H. & Lawley, B. Why don’t all infants have bifidobacteria in their stool?. Front. Microbiol. 7, 834 (2016).

    Article  Google Scholar 

  • 6.

    Kumar, H. et al. The bifidogenic effect revisited—ecology and health perspectives of bifidobacterial colonization in early life. Microorganisms 8(12), 1855. https://doi.org/10.3390/microorganisms8121855 (2020).

  • 7.

    Bryant, K. & McDonald, L. C. Clostridium difficile infections in children. Pediatr. Infect. Dis. J. 28(2), 145–146 (2019).

    Article  Google Scholar 

  • 8.

    Lee, S. H., Gong, Y. N. & Ryoo, E. Clostridium difficile colonization and/or infection during infancy and the risk of childhood allergic diseases. Korean J. Pediatr. 60(5), 145–150 (2017).

    Article  Google Scholar 

  • 9.

    Shamir, R. The benefits of breast feeding. Nestle Nutr. Inst. Workshop Series. 86, 67–76 (2016).

    Article  Google Scholar 

  • 10.

    Turck, D. et al. Breastfeeding: Health benefits for child and mother. Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 20, S29-48 (2013).

    Google Scholar 

  • 11.

    Martin, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143(6), 754–758 (2003).

    CAS  Article  Google Scholar 

  • 12.

    Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells?. Pediatrics 119(3), e724-732 (2007).

    Article  Google Scholar 

  • 13.

    Fernandez, L. et al. The microbiota of human milk in healthy women. Cell Mol. Biol. 59(1), 31–42 (2013).

    CAS  PubMed  Google Scholar 

  • 14.

    Heikkila, M. P. & Saris, P. E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3), 471–478 (2003).

    CAS  Article  Google Scholar 

  • 15.

    Damaceno, Q. S. et al. Evaluation of potential probiotics isolated from human milk and colostrum. Probiot. Antimicrob. Proteins. 9(4), 371–379 (2017).

    Article  Google Scholar 

  • 16.

    Boix-Amoros, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).

    Article  Google Scholar 

  • 17.

    Collado, M. C., Delgado, S., Maldonado, A. & Rodriguez, J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48(5), 523–528 (2009).

    CAS  Article  Google Scholar 

  • 18.

    Martin, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75(4), 965–969 (2009).

    CAS  Article  Google Scholar 

  • 19.

    Qian, L., Song, H. & Cai, W. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR. Beneficial Microb. 7(4), 559–569 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Soto, A. et al. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59(1), 78–88 (2014).

    Article  Google Scholar 

  • 21.

    Sugahara, H., Odamaki, T., Hashikura, N., Abe, F. & Xiao, J. Z. Differences in folate production by bifidobacteria of different origins. Biosci. Microb. Food Health. 34(4), 87–93 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Odamaki, T. et al. Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int. J. Genom. 2015, 567809 (2015).

    Google Scholar 

  • 23.

    Kolida, S. & Gibson, G. R. Synbiotics in health and disease. Ann. Rev. Food Sci. Technol. 2, 373–393 (2011).

    Article  Google Scholar 

  • 24.

    Gurry, T. Synbiotic approaches to human health and well-being. Microb. Biotechnol. 10(5), 1070–1073 (2017).

    Article  Google Scholar 

  • 25.

    Chua, M. C. et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: A randomized, double-blind, multicenter study. J. Pediatr. Gastroenterol. Nutr. 65(1), 102–106 (2017).

    Article  Google Scholar 

  • 26.

    van Aa, L. B. et al. Effect of a new synbiotic mixture on atopic dermatitis in infants: A randomized-controlled trial. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 40(5), 795–804 (2010).

    Google Scholar 

  • 27.

    Ouwehand, A. C. A review of dose–responses of probiotics in human studies. Beneficial Microb. 8(2), 143–151 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Bakker-Zierikzee, A. M. et al. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br. J. Nutr. 94(5), 783–790 (2005).

    CAS  Article  Google Scholar 

  • 29.

    Haarman, M. & Knol, J. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71(5), 2318–2324 (2005).

    CAS  Article  Google Scholar 

  • 30.

    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3), 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x (2011).

    Article  Google Scholar 

  • 31.

    O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).

    Article  Google Scholar 

  • 32.

    Turroni, F., Ribbera, A., Foroni, E., van Sinderen, D. & Ventura, M. Human gut microbiota and bifidobacteria: From composition to functionality. Antonie Van Leeuwenhoek 94(1), 35–50 (2008).

    Article  Google Scholar 

  • 33.

    Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectrum. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).

    Article  Google Scholar 

  • 34.

    Underwood, M. A. et al. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163(6), 1585–1591.e1589 (2013).

    CAS  Article  Google Scholar 

  • 35.

    Bridgman, S. L. et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: Differences in relative versus absolute concentrations. Front. Nutr. 4, 11. https://doi.org/10.3389/fnut.2017.00011 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Wopereis, H. et al. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J. Allergy Clin. Immunol. 141(4), 1334–1342.e5 (2017).

    Article  Google Scholar 

  • 37.

    Tunc, V. T., Camurdan, A. D., Ilhan, M. N., Sahin, F. & Beyazova, U. Factors associated with defecation patterns in 0–24-month-old children. Eur. J. Pediatr. 167(12), 1357–1362 (2008).

    Article  Google Scholar 

  • 38.

    Infante, D. D., Segarra, O. O., Redecillas, S. S., Alvarez, M. M. & Miserachs, M. M. Modification of stool’s water content in constipated infants: management with an adapted infant formula. Nutr. J. 10, 55. https://doi.org/10.1186/1475-2891-10-55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Valdes-Varela, L., Hernandez-Barranco, A. M., Ruas-Madiedo, P. & Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 7, 738 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15(10), 630–638 (2017).

    CAS  Article  Google Scholar 

  • 41.

    Baglatzi, L. et al. Effect of infant formula containing a low dose of the probiotic Bifidobacterium lactis CNCM I-3446 on immune and gut functions in c-section delivered babies: A pilot study. Clin. Med. Insights. Pediatr. 10, 11–19 (2016).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics

    Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats