in

Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study

  • 1.

    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331), 543–547 (2011).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134(2), e362–372 (2014).

    Article  Google Scholar 

  • 3.

    Chichlowski, M., De Lartigue, G., German, J. B., Raybould, H. E. & Mills, D. A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 55(3), 321–332 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Lewis, Z. T. & Mills, D. A. Differential establishment of bifidobacteria in the breastfed infant Ggut. Nestle Nutr. Inst. Workshop Series. 88, 149–159 (2017).

    Article  Google Scholar 

  • 5.

    Tannock, G. W., Lee, P. S., Wong, K. H. & Lawley, B. Why don’t all infants have bifidobacteria in their stool?. Front. Microbiol. 7, 834 (2016).

    Article  Google Scholar 

  • 6.

    Kumar, H. et al. The bifidogenic effect revisited—ecology and health perspectives of bifidobacterial colonization in early life. Microorganisms 8(12), 1855. https://doi.org/10.3390/microorganisms8121855 (2020).

  • 7.

    Bryant, K. & McDonald, L. C. Clostridium difficile infections in children. Pediatr. Infect. Dis. J. 28(2), 145–146 (2019).

    Article  Google Scholar 

  • 8.

    Lee, S. H., Gong, Y. N. & Ryoo, E. Clostridium difficile colonization and/or infection during infancy and the risk of childhood allergic diseases. Korean J. Pediatr. 60(5), 145–150 (2017).

    Article  Google Scholar 

  • 9.

    Shamir, R. The benefits of breast feeding. Nestle Nutr. Inst. Workshop Series. 86, 67–76 (2016).

    Article  Google Scholar 

  • 10.

    Turck, D. et al. Breastfeeding: Health benefits for child and mother. Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 20, S29-48 (2013).

    Google Scholar 

  • 11.

    Martin, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143(6), 754–758 (2003).

    CAS  Article  Google Scholar 

  • 12.

    Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells?. Pediatrics 119(3), e724-732 (2007).

    Article  Google Scholar 

  • 13.

    Fernandez, L. et al. The microbiota of human milk in healthy women. Cell Mol. Biol. 59(1), 31–42 (2013).

    CAS  PubMed  Google Scholar 

  • 14.

    Heikkila, M. P. & Saris, P. E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3), 471–478 (2003).

    CAS  Article  Google Scholar 

  • 15.

    Damaceno, Q. S. et al. Evaluation of potential probiotics isolated from human milk and colostrum. Probiot. Antimicrob. Proteins. 9(4), 371–379 (2017).

    Article  Google Scholar 

  • 16.

    Boix-Amoros, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).

    Article  Google Scholar 

  • 17.

    Collado, M. C., Delgado, S., Maldonado, A. & Rodriguez, J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48(5), 523–528 (2009).

    CAS  Article  Google Scholar 

  • 18.

    Martin, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75(4), 965–969 (2009).

    CAS  Article  Google Scholar 

  • 19.

    Qian, L., Song, H. & Cai, W. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR. Beneficial Microb. 7(4), 559–569 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Soto, A. et al. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59(1), 78–88 (2014).

    Article  Google Scholar 

  • 21.

    Sugahara, H., Odamaki, T., Hashikura, N., Abe, F. & Xiao, J. Z. Differences in folate production by bifidobacteria of different origins. Biosci. Microb. Food Health. 34(4), 87–93 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Odamaki, T. et al. Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int. J. Genom. 2015, 567809 (2015).

    Google Scholar 

  • 23.

    Kolida, S. & Gibson, G. R. Synbiotics in health and disease. Ann. Rev. Food Sci. Technol. 2, 373–393 (2011).

    Article  Google Scholar 

  • 24.

    Gurry, T. Synbiotic approaches to human health and well-being. Microb. Biotechnol. 10(5), 1070–1073 (2017).

    Article  Google Scholar 

  • 25.

    Chua, M. C. et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: A randomized, double-blind, multicenter study. J. Pediatr. Gastroenterol. Nutr. 65(1), 102–106 (2017).

    Article  Google Scholar 

  • 26.

    van Aa, L. B. et al. Effect of a new synbiotic mixture on atopic dermatitis in infants: A randomized-controlled trial. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 40(5), 795–804 (2010).

    Google Scholar 

  • 27.

    Ouwehand, A. C. A review of dose–responses of probiotics in human studies. Beneficial Microb. 8(2), 143–151 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Bakker-Zierikzee, A. M. et al. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br. J. Nutr. 94(5), 783–790 (2005).

    CAS  Article  Google Scholar 

  • 29.

    Haarman, M. & Knol, J. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71(5), 2318–2324 (2005).

    CAS  Article  Google Scholar 

  • 30.

    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3), 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x (2011).

    Article  Google Scholar 

  • 31.

    O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).

    Article  Google Scholar 

  • 32.

    Turroni, F., Ribbera, A., Foroni, E., van Sinderen, D. & Ventura, M. Human gut microbiota and bifidobacteria: From composition to functionality. Antonie Van Leeuwenhoek 94(1), 35–50 (2008).

    Article  Google Scholar 

  • 33.

    Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectrum. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).

    Article  Google Scholar 

  • 34.

    Underwood, M. A. et al. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163(6), 1585–1591.e1589 (2013).

    CAS  Article  Google Scholar 

  • 35.

    Bridgman, S. L. et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: Differences in relative versus absolute concentrations. Front. Nutr. 4, 11. https://doi.org/10.3389/fnut.2017.00011 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Wopereis, H. et al. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J. Allergy Clin. Immunol. 141(4), 1334–1342.e5 (2017).

    Article  Google Scholar 

  • 37.

    Tunc, V. T., Camurdan, A. D., Ilhan, M. N., Sahin, F. & Beyazova, U. Factors associated with defecation patterns in 0–24-month-old children. Eur. J. Pediatr. 167(12), 1357–1362 (2008).

    Article  Google Scholar 

  • 38.

    Infante, D. D., Segarra, O. O., Redecillas, S. S., Alvarez, M. M. & Miserachs, M. M. Modification of stool’s water content in constipated infants: management with an adapted infant formula. Nutr. J. 10, 55. https://doi.org/10.1186/1475-2891-10-55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Valdes-Varela, L., Hernandez-Barranco, A. M., Ruas-Madiedo, P. & Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 7, 738 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15(10), 630–638 (2017).

    CAS  Article  Google Scholar 

  • 41.

    Baglatzi, L. et al. Effect of infant formula containing a low dose of the probiotic Bifidobacterium lactis CNCM I-3446 on immune and gut functions in c-section delivered babies: A pilot study. Clin. Med. Insights. Pediatr. 10, 11–19 (2016).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Brewing up a dirty-water remedy (and more) with kombucha-inspired biosensors

    Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges