in

Implications of monsoon season and UVB radiation for COVID-19 in India

  • 1.

    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Chadha, M. S. et al. Dynamics of influenza seasonality at sub-regional levels in India and implications for vaccination timing. PLoS ONE 10, e0124122 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Dash, N., Rose, W. & Nallasamy, K. India’s lockdown exit: Are we prepared to lock horns with COVID-19 and dengue in the rainy season?. Pediatr. Res. https://doi.org/10.1038/s41390-020-1063-7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Moozhipurath, R. K. & Kulkarni, P. Monsoon, Vitamin-D, COVID-19: Implications for India. Postgraduate Medical Journal Blog (accessed 20 November 2020). https://blogs.bmj.com/pmj/2020/07/08/monsoon-vitamin-d-covid-19-implications-for-india/ (2020).

  • 5.

    D’Avolio, A. et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 12, 1359 (2020).

    PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Meltzer, D. O. et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw. Open 3, e2019722 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Merzon, E. et al. Low plasma 25 (OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 287, 3693–3702 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Kaufman, H. W., Niles, J. K., Kroll, M. H., Bi, C. & Holick, M. F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 15, e0239252 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Honardoost, M., Ghavideldarestani, M. & Khamseh, M. E. Role of vitamin D in pathogenesis and severity of COVID-19 infection. Arch. Physiol. Biochem. https://doi.org/10.1080/13813455.2020.1792505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Ilie, P. C., Stefanescu, S. & Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 32, 1195–1198 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Maghbooli, Z. et al. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS ONE 15, e0239799 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Castillo, M. E. et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 203, 105751 (2020).

    Article  CAS  Google Scholar 

  • 13.

    Benskin, L. L. A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency. Front. Public Health 8, 513 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Moozhipurath, R. K., Kraft, L. & Skiera, B. Evidence of protective role of ultraviolet-B (UVB) radiation in reducing COVID-19 deaths. Sci. Rep. 10, 17705 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Engelsen, O., Brustad, M., Aksnes, L. & Lund, E. Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem. Photobiol. 81, 1287–1290 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Li, Y. et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health 7, e1031–e1045 (2019).

    PubMed  Article  Google Scholar 

  • 17.

    Li, Y., Wang, X. & Nair, H. Global seasonality of human seasonal coronaviruses: A clue for postpandemic circulating season of severe acute respiratory syndrome coronavirus 2?. J. Infect. Dis. 222, 1090–1097 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Gupta, E., Dar, L., Kapoor, G. & Broor, S. The changing epidemiology of dengue in Delhi, India. Virol. J. 3, 1–5 (2006).

    Article  Google Scholar 

  • 19.

    Laneri, K. et al. Forcing versus feedback: Epidemic malaria and monsoon rains in Northwest India. PLoS Comput. Biol. 6, e1000898 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Shaman, J., Jeon, C. Y., Giovannucci, E. & Lipsitch, M. Shortcomings of vitamin D-based model simulations of seasonal influenza. PLoS ONE 6, e20743 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Ianevski, A. et al. Low temperature and low UV indexes correlated with peaks of influenza virus activity in Northern Europe during 2010–2018. Viruses 11, 207 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • 22.

    Yang, W. et al. Dynamics of influenza in tropical Africa: Temperature, humidity, and co-circulating (sub)types. Influenza Other Respir. Viruses 12, 446–456 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Sajadi, M. M. et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw. Open 3, e2011834 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Dhara, V. R., Schramm, P. J. & Luber, G. Climate change & infectious diseases in India: Implications for health care providers. Indian J. Med. Res. 138, 847–852 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Nimitphong, H., Chanprasertyothin, S., Jongjaroenprasert, W. & Ongphiphadhanakul, B. The association between vitamin D status and circulating adiponectin independent of adiposity in subjects with abnormal glucose tolerance. Endocrine 36, 205–210 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Sagripanti, J.-L. & Lytle, C. D. Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 83, 1278–1282 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Hart, P. H., Gorman, S. & Finlay-Jones, J. J. Modulation of the immune system by UV radiation: More than just the effects of vitamin D?. Nat. Rev. Immunol. 11, 584–596 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Bodiwala, D. et al. Prostate cancer risk and exposure to ultraviolet radiation: Further support for the protective effect of sunlight. Cancer Lett. 192, 145–149 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Grant, W. B. An estimate of premature cancer mortality in the US due to inadequate doses of solar ultraviolet-B radiation. Cancer 94, 1867–1875 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Grant, W. B. An ecologic study of the role of solar UV-B radiation in reducing the risk of cancer using cancer mortality data, dietary supply data, and latitude for European countries. In Biologic Effects of Light 2001 (ed. Holick, M. F.) 267–276 (Springer, Berlin, 2002).

    Google Scholar 

  • 31.

    Rostand, S. G. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 30, 150–156 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Ritu, G. & Gupta, A. Vitamin D deficiency in India: Prevalence, causalities and interventions. Nutrients 6, 729–775 (2014).

    MathSciNet  Article  CAS  Google Scholar 

  • 34.

    Zittermann, A. Vitamin D in preventive medicine: Are we ignoring the evidence?. Br. J. Nutr. 89, 552–572 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Tangpricha, V., Pearce, E. N., Chen, T. C. & Holick, M. F. Vitamin D insufficiency among free-living healthy young adults. Am. J. Med. 112, 659–662 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Crowe, F. L. et al. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC–Oxford study. Public Health Nutr. 14, 340–346 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Harinarayan, C. V., Holick, M. F., Prasad, U. V., Vani, P. S. & Himabindu, G. Vitamin D status and sun exposure in India. Dermato-endocrinology 5, 130–141 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Grant, W. B. et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 988 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 39.

    Charoenngam, N. & Holick, M. F. Immunologic effects of vitamin D on human health and disease. Nutrients 12, 2097 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 40.

    Cui, C. et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol. 26, 101295 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Xu, J. et al. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin–angiotensin system. Mol. Med. Rep. 16, 7432–7438 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Adams, J. S. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol. 182, 4289–4295 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Herr, C., Shaykhiev, R. & Bals, R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin. Biol. Ther. 7, 1449–1461 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Zhou, Y. et al. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data. Lancet Digit. Health 2, e417–e424 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Lytle, C. D. & Sagripanti, J.-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 79, 14244–14252 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Deliconstantinos, G., Villiotou, V. & Stravrides, J. C. Release by ultraviolet B (u.v.B.) radiation of nitric oxide (NO) from human keratinocytes: A potential role for nitric oxide in erythema production. Br. J. Pharmacol. 114, 1257–1265 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222–12248 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Grant, W. B. The effect of solar UVB doses and vitamin D production, skin cancer action spectra, and smoking in explaining links between skin cancers and solid tumours. Eur. J. Cancer 44, 12–15 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Geologists produce new timeline of Earth’s Paleozoic climate changes

    Sludge amendment accelerating reclamation process of reconstructed mining substrates