in

Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

  • 1.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Song, X. P., Huang, C., Saatchi, S. S., Hansen, M. C. & Townshend, J. R. Annual carbon emissions from deforestation in the Amazon basin between 2000 and 2010. PLoS ONE 10, 1–21 (2015).

    Google Scholar 

  • 6.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Ministério do Meio Ambiente (MMA). REDD+ and Brazil’s Nationally Determined Contribution. http://redd.mma.gov.br/en/redd-and-brazil-s-ndc (2016).

  • 8.

    Bongers, F., Chazdon, R. L., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Almeida, C. Ade et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46, 291–302 (2016).

    Article 

    Google Scholar 

  • 10.

    Nunes, S. Jr., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).

  • 11.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

  • 15.

    Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

  • 16.

    Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005).

    Article 

    Google Scholar 

  • 17.

    Anderegg, W. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

  • 18.

    Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Yang, Y., Saatchi, S., Xu, L., Keller, M. & Corsini, C. R. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006396 (2020).

  • 20.

    Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: A case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).

    Article 

    Google Scholar 

  • 21.

    Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-019-0470-4 (2020).

  • 22.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (2019).

  • 24.

    IPCC. Chapter 4 Forest Land. In IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) vol. 4, 1–29 (IGES, 2006).

  • 25.

    Mapbiomas Brasil. Project MapBiomas—Collection 3.1 of Brazilian Land Cover and Use Map Series. https://mapbiomas.org/ (2018).

  • 26.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 1–12 (2018).

    Article 

    Google Scholar 

  • 27.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).

    Google Scholar 

  • 28.

    Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170411 (2018).

  • 29.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

  • 30.

    Zuquim, G. et al. Making the most of scarce data: mapping soil gradients in data-poor areas using species occurrence records. Methods Ecol. Evol. 10, 788–801 (2019).

    Article 

    Google Scholar 

  • 31.

    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. (2015).

  • 32.

    Johnson, C. M., Vieira, I. C. G., Zarin, D. J., Frizano, J. & Johnson, A. H. Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecol. Manag. 147, 245–252 (2001).

    Article 

    Google Scholar 

  • 33.

    Moran, E. F. Effects of soil fertility and land-use on forest succesion in Amazonia. Forest Ecol. Manag. 139, 93–108 (2000).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Alves, D. S. et al. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Glob. Chang. Biol. 3, 451–461 (1997).

    ADS 
    Article 

    Google Scholar 

  • 37.

    MCT. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. (2016). https://unfccc.int/documents/66129.

  • 38.

    Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Morton, D. C. et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 115, 1706–1720 (2011).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Saatchi, S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Wandelli, E. V. & Fearnside, P. M. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. Forest Ecol. Manag. 347, 140–148 (2015).

    Article 

    Google Scholar 

  • 45.

    Uhl, C., Buschbacher, R. & Serrão, E. A. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J. Ecol. 76, 663–681 (1988).

    Article 

    Google Scholar 

  • 46.

    Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).

    Article 

    Google Scholar 

  • 48.

    Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest. Science 334, 232–235 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

  • 50.

    Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).

  • 51.

    Hawes, J. E. et al. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).

    Article 

    Google Scholar 

  • 52.

    Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 26, 2956–2969 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15352 (2020).

  • 54.

    Toledo, R. M. et al. Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landsc. Ecol. 35, 1403–1416 (2020).

    Article 

    Google Scholar 

  • 55.

    Armenteras, D., González, T. M. & Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 159, 73–79 (2013).

    Article 

    Google Scholar 

  • 56.

    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article 

    Google Scholar 

  • 57.

    Alencar, A. A. C., Solórzano, L. A. & Nepstad, D. C. Modeling forest understory fires in an eastern amazonian landscape. Ecol. Appl. 14, 139–149 (2004).

    Article 

    Google Scholar 

  • 58.

    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25, 39–56 (2019).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

  • 61.

    PRODES. TerraBrasilis—Taxas anuais de sesmatamento na Amazônia Legal Brasiliera. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (2020).

  • 62.

    Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Chang. Biol. 24, 5680–5694 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Fearnside, P. M. & Guimarães, W. M. Carbon uptake By secondary forests in Brazilian Amazonia. Forest Ecology and Management 80, 35–46 (1996).

  • 64.

    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, 1–9 (2020).

    Article 

    Google Scholar 

  • 65.

    Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, 1–5 (2007).

    Article 

    Google Scholar 

  • 66.

    Campanharo, W. & Silva Junior, C. H. L. Maximun Cumulative Water Deficit—MCWD: a R language script. https://doi.org/10.5281/zenodo.2652629 (2019).

  • 67.

    Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).

    Article 

    Google Scholar 

  • 68.

    Kuhn, M. et al. Caret: 6.0-71., Classification and Regression Training. R package version. (2016). https://rdrr.io/cran/caret/.

  • 69.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.r-project.org/.

  • 70.

    Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).

  • 71.

    Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 1–11 (2008).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure available in the party package. R J. 1, 14–17 (2009).

  • 73.

    Behnamian, A. et al. A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 14, 1988–1992 (2017).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Congalton Russell, G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. vol. 25 (CRC Press, 2009).

  • 75.

    Heinrich, V. et al. Data from paper: Large carbon sink potential of Secondary Forests in Brazilian Amazon to mitigate climate change. Zenodo https://zenodo.org/record/4479234#.YBVdBHNxdPY (2021).

  • 76.

    Heinrich, V. et al. Code from paper: Large carbon sink potential of Secondary Forests in the Brazilian Amazon to mitigate climate change. GitHub https://github.com/heinrichTrees/secondary-forest-regrowth-amazon-public (2021).


  • Source: Ecology - nature.com

    Chemists gain new insights into the behavior of water in an influenza virus channel

    Mutability of demographic noise in microbial range expansions