Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).
Google Scholar
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).
Google Scholar
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Song, X. P., Huang, C., Saatchi, S. S., Hansen, M. C. & Townshend, J. R. Annual carbon emissions from deforestation in the Amazon basin between 2000 and 2010. PLoS ONE 10, 1–21 (2015).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Ministério do Meio Ambiente (MMA). REDD+ and Brazil’s Nationally Determined Contribution. http://redd.mma.gov.br/en/redd-and-brazil-s-ndc (2016).
Bongers, F., Chazdon, R. L., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).
Google Scholar
Almeida, C. Ade et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46, 291–302 (2016).
Google Scholar
Nunes, S. Jr., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).
Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
Google Scholar
Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).
Google Scholar
Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).
Google Scholar
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005).
Google Scholar
Anderegg, W. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).
Google Scholar
Yang, Y., Saatchi, S., Xu, L., Keller, M. & Corsini, C. R. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006396 (2020).
Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: A case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).
Google Scholar
Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-019-0470-4 (2020).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (2019).
IPCC. Chapter 4 Forest Land. In IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) vol. 4, 1–29 (IGES, 2006).
Mapbiomas Brasil. Project MapBiomas—Collection 3.1 of Brazilian Land Cover and Use Map Series. https://mapbiomas.org/ (2018).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 1–12 (2018).
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170411 (2018).
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Zuquim, G. et al. Making the most of scarce data: mapping soil gradients in data-poor areas using species occurrence records. Methods Ecol. Evol. 10, 788–801 (2019).
Google Scholar
Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. (2015).
Johnson, C. M., Vieira, I. C. G., Zarin, D. J., Frizano, J. & Johnson, A. H. Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecol. Manag. 147, 245–252 (2001).
Google Scholar
Moran, E. F. Effects of soil fertility and land-use on forest succesion in Amazonia. Forest Ecol. Manag. 139, 93–108 (2000).
Google Scholar
Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).
Google Scholar
Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).
Google Scholar
Alves, D. S. et al. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Glob. Chang. Biol. 3, 451–461 (1997).
Google Scholar
MCT. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. (2016). https://unfccc.int/documents/66129.
Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).
Google Scholar
Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).
Google Scholar
Morton, D. C. et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 115, 1706–1720 (2011).
Google Scholar
Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004).
Google Scholar
Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).
Google Scholar
Saatchi, S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).
Google Scholar
Wandelli, E. V. & Fearnside, P. M. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. Forest Ecol. Manag. 347, 140–148 (2015).
Google Scholar
Uhl, C., Buschbacher, R. & Serrão, E. A. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J. Ecol. 76, 663–681 (1988).
Google Scholar
Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1–10 (2018).
Google Scholar
Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).
Google Scholar
Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest. Science 334, 232–235 (2011).
Google Scholar
Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).
Hawes, J. E. et al. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).
Google Scholar
Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 26, 2956–2969 (2020).
Google Scholar
Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15352 (2020).
Toledo, R. M. et al. Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landsc. Ecol. 35, 1403–1416 (2020).
Google Scholar
Armenteras, D., González, T. M. & Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 159, 73–79 (2013).
Google Scholar
Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
Google Scholar
Alencar, A. A. C., Solórzano, L. A. & Nepstad, D. C. Modeling forest understory fires in an eastern amazonian landscape. Ecol. Appl. 14, 139–149 (2004).
Google Scholar
Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25, 39–56 (2019).
Google Scholar
Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).
Google Scholar
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
PRODES. TerraBrasilis—Taxas anuais de sesmatamento na Amazônia Legal Brasiliera. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (2020).
Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Chang. Biol. 24, 5680–5694 (2018).
Google Scholar
Fearnside, P. M. & Guimarães, W. M. Carbon uptake By secondary forests in Brazilian Amazonia. Forest Ecology and Management 80, 35–46 (1996).
Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, 1–9 (2020).
Google Scholar
Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, 1–5 (2007).
Google Scholar
Campanharo, W. & Silva Junior, C. H. L. Maximun Cumulative Water Deficit—MCWD: a R language script. https://doi.org/10.5281/zenodo.2652629 (2019).
Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).
Google Scholar
Kuhn, M. et al. Caret: 6.0-71., Classification and Regression Training. R package version. (2016). https://rdrr.io/cran/caret/.
R Development Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.r-project.org/.
Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 1–11 (2008).
Google Scholar
Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure available in the party package. R J. 1, 14–17 (2009).
Behnamian, A. et al. A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 14, 1988–1992 (2017).
Google Scholar
Congalton Russell, G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. vol. 25 (CRC Press, 2009).
Heinrich, V. et al. Data from paper: Large carbon sink potential of Secondary Forests in Brazilian Amazon to mitigate climate change. Zenodo https://zenodo.org/record/4479234#.YBVdBHNxdPY (2021).
Heinrich, V. et al. Code from paper: Large carbon sink potential of Secondary Forests in the Brazilian Amazon to mitigate climate change. GitHub https://github.com/heinrichTrees/secondary-forest-regrowth-amazon-public (2021).
Source: Ecology - nature.com