in

Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts

  • 1.

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U. S. A. 112, 7519–7523 (2015).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 3.

    Lange, C. E. & Lord, J. C. Protistan entomopathogens. In Insect Pathology (eds. Vega, F. E. & Kaya, H. K.) 367–394 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00010-5.

  • 4.

    Fabel, P., Radek, R. & Storch, V. A new spore-forming protist, Nephridiophaga blaberi sp. nov., in the Death’s head cockroach Blaberus craniifer. Eur. J. Protistol. 36, 387–395 (2000).

    Article  Google Scholar 

  • 5.

    Ivanić, M. Die Entwicklungsgeschichte und die parasitäre Zerstörungsarbeit einer in den Zellen der Malpighischen Gefäße der Honigbiene (Apis mellifera) schmarotzenden Haplosporidie Nephridiophaga apis n. g. n. sp.. Cellule 45, 291–324 (1937).

    Google Scholar 

  • 6.

    Ormières, R. & Manier, J.-F. Observations sur Nephridiophaga forficulae (Léger, 1909). Ann. Parasitol. Hum. Comparée 48, 1–10 (1973).

    Article  Google Scholar 

  • 7.

    Radek, R., Wellmanns, D. & Wolf, A. Two new species of Nephridiophaga (Zygomycota) in the Malpighian tubules of cockroaches. Parasitol. Res. 109, 473–482 (2011).

    PubMed  Article  Google Scholar 

  • 8.

    Radek, R. & Herth, W. Ultrastructural investigation of the spore-forming protist Nephridiophaga blattellae in the Malpighian tubules of the German cockroach Blattella germanica. Parasitol. Res. 85, 216–231 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Woolever, P. Life history and electron microscopy of a haplosporidian, Nephridiophaga blattellae (Crawley) n. comb, in the Malphigian tubules of the German Cockroach, Blattella germanica (L.). J. Protozool. 13, 622–642 (1966).

    Article  Google Scholar 

  • 10.

    Radek, R., Klein, G. & Storch, V. The spore of the unicellular organism Nephridiophaga blattellae: ultrastructure and substances of the spore wall. Acta Protozool. 41, 169–181 (2002).

    Google Scholar 

  • 11.

    Purrini, K. & Weiser, J. Light and electron microscope studies on a protozoan, Oryctospora alata n. gen., n. sp. (Protista, Coelosporidiidae), parasitizing a natural population of the rhinoceros beetle, Oryctes monoceros Oliv. (Coleoptera, Scarabaeidae). Zool. Beitraege 332, 209–220 (1990).

    Google Scholar 

  • 12.

    Purrini, K. & Rohde, M. Light and electron microscope studies on two new protists, Coelosporidium schalleri n. sp. and Coelosporidium meloidorum n. sp. (Protista) infecting natural populations of the flea beetle, Podagrica fuscicornis, and flower beetle, Mylabris maculiventris. Zool. Anz. 220, 323–333 (1988).

    Google Scholar 

  • 13.

    Lange, C. E. Unclassified protists of arthropods: the ultrastructure of Nephridiophaga periplanetae (Lutz & Splendore, 1903) n. comb., and the affinities of the Nephridiophagidae to other protists. J. Eukaryot. Microbiol. 40, 689–700 (1993).

    Article  Google Scholar 

  • 14.

    Perrin, W. S. Observations on the structure and life-history of Pleistophora periplanetæ, Lutz and Splendore. J. Cell Sci. 49, 615–633 (1906).

    Google Scholar 

  • 15.

    Sprague, V. Recent problems of taxonomy and morphology of Haplosporidia. J. Parasitol. 56, 327–328 (1970).

    Google Scholar 

  • 16.

    Wylezich, C., Radek, R. & Schlegel, M. Phylogenetische Analyse der 18S rRNA identifiziert den parasitischen Protisten Nephridiophaga blattellae (Nephridiophagidae) als Vertreter der Zygomycota (Fungi). Denisia 13, 435–442 (2004).

    Google Scholar 

  • 17.

    Radek, R. et al. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys 25, 31–50 (2017).

    Article  Google Scholar 

  • 18.

    Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B Biol. Sci. 286, 20182076 (2019).

    Article  Google Scholar 

  • 19.

    Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. Bioscience 47, 12–20 (1997).

    Article  Google Scholar 

  • 20.

    Peek, A. S., Feldman, R. A., Lutz, R. A. & Vrijenhoek, R. C. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl. Acad. Sci. U. S. A. 95, 9962–9966 (1998).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 21.

    Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol. 4, e337 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Hughes, J., Kennedy, M., Johnson, K. P., Palma, R. L. & Page, R. D. M. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst. Biol. 56, 232–251 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Desai, M. S. et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12, 2120–2132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Wijayawardene, N. et al. Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).

    Article  Google Scholar 

  • 25.

    Tedersoo, L., Anslan, S., Bahram, M., Kõljalg, U. & Abarenkov, K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers. 103, 273–293 (2020).

    Article  Google Scholar 

  • 26.

    Crawley, H. Interrelationships of the Sporozoa. Am. Nat. 39, 607–624 (1905).

    Article  Google Scholar 

  • 27.

    White, M. M. et al. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98, 872–884 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Letcher, P. M., Powell, M. J., Churchill, P. F. & Chambers, J. G. Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycol. Res. 110, 898–915 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Van den Wyngaert, S., Rojas-Jimenez, K., Seto, K., Kagami, M. & Grossart, H.-P. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65, 870–881 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 30.

    James, T. Y. et al. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871 (2006).

    PubMed  Article  Google Scholar 

  • 31.

    Powell, M. J., Letcher, P. M., Chambers, J. G. & Roychoudhury, S. A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107, 419–431 (2015).

    PubMed  Article  Google Scholar 

  • 32.

    Letcher, P. M., Powell, M. J., Lopez, S., Lee, P. A. & McBride, R. C. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 107, 522–531 (2015).

    PubMed  Article  Google Scholar 

  • 33.

    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Jamy, M. et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Resour. 20, 429–443 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes mpi: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Lloyd, D. & Harris, J. C. Giardia: highly evolved parasite or early branching eukaryote?. Trends Microbiol. 10, 122–127 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Burki, F. et al. Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr. Biol. 23, 1541–1547 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Abbott, C. L. Evolution: hidden at the end of a very long branch. Curr. Biol. 27, R271–R273 (2014).

    Article  CAS  Google Scholar 

  • 41.

    Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D. & Simmons, D. R. Cladochytriales—a new order in Chytridiomycota. Mycol. Res. 113, 498–507 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Jerônimo, G. H., Jesus, A. L., Simmons, D. R., James, T. Y. & Pires-Zottarelli, C. L. A. Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.). Mycologia 111, 506–516 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 44.

    Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. Nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 48.

    Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 49.

    Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Powell, M. J. & Letcher, P. M. Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In Systematics and Evolution: The Mycota VII Part A (eds. McLaughlin, D. J. & Spatafora, J. W.) 141–175 (Springer, 2014). https://doi.org/10.1007/978-3-642-55318-9.

  • 51.

    Cali, A., Becnel, J. J. & Takvorian, P. M. Microsporidia. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1559–1618 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_27.

  • 52.

    Powell, M. J. Chytridiomycota. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1523–1558 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_18.

  • 53.

    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl. Acad. Sci. U. S. A. 107, 7359–7364 (2010).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 54.

    Ebert, D. Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr. Opin. Microbiol. 11, 290–301 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrasructure Res. 26, 31–43 (1969).

    CAS  Article  Google Scholar 

  • 56.

    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Liu, H. & Beckenbach, A. T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol. 1, 41–52 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 67.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  Article  Google Scholar 

  • 68.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Le, V. S., Dang, C. C. & Le, Q. S. Improved mitochondrial amino acid substitution models for metazoan evolutionary studies. BMC Evol. Biol. 17, 136 (2017).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species