in

Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic)

  • 1.

    Roberts, J. M., Wheeler, A. J., Freiwald, A. & Cairns, S. D. Cold-Water Corals. The Biology and Geology of Deep-Sea Coral Habitats. (Cambridge University Press, 2009).

  • 2.

    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. Plos One 6, e18483 (2011).

  • 3.

    Morato, T. et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob. Chang. Biol. 26, 2181–2202. https://doi.org/10.1111/gcb.14996 (2020).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Arnaud-Haond, S. et al. Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res. Pt. II(145), 110–119 (2017).

    Article 

    Google Scholar 

  • 5.

    Buhl-Mortensen, L., Olafsdottir, S. H., Buhl-Mortensen, P., Burgos, J. M. & Ragnarsson, S. A. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: Effects of bathymetry and hydrography. Hydrobiologia 759, 39–61. https://doi.org/10.1007/s10750-014-2116-x (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Gori, A. et al. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10, 2049–2060. https://doi.org/10.5194/bg-10-2049-2013 (2013).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Orejas, C. et al. Cold-water corals in the Cap de Creus canyon (north-western Mediterranean): Spatial distribution, density and anthropogenic impact. Mar. Ecol. Prog. Ser. 397, 37–51 (2009).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Buhl-Mortensen, P. Coral reefs in the Southern Barents Sea: Habitat description and the effects of bottom fishing. Mar. Biol. Res. 13, 1027–1040. https://doi.org/10.1080/17451000.2017.1331040 (2017).

    Article 

    Google Scholar 

  • 9.

    Cairns, S. Antarctic and subantarctic Scleractinia. Antarctic Res. Ser. 34. https://doi.org/10.1029/AR034p0001 (1983).

  • 10.

    Cairns, S. D. & Zibrowius, H. Cnidaria Anthozoa: Azooxanthellate Scleractinia from the Philippine and Indonesian regions. Mém. Mus. Natl. Hist. Nat. 172, 27–243 (1997).

    Google Scholar 

  • 11.

    Tracey, D., Rowden, A., Mackay, K. & Compton, T. Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar. Ecol. Prog. Ser. 430, 1–22. https://doi.org/10.3354/meps09164 (2011).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Auscavitch, S. R. et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands protected area. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00042 (2020).

  • 13.

    Angeletti, L., Castellan, G., Montagna, P., Remia, A. & Taviani, M. “The Corsica channel cold-water coral province” (Mediterranean Sea). Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00661 (2020).

  • 14.

    Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) 213–243 (Springer, 2019).

  • 15.

    Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262. https://doi.org/10.1016/j.pocean.2019.04.010 (2019).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Freiwald, A. et al. The White Coral Community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22, 58–74 (2009).

    Article 

    Google Scholar 

  • 17.

    Fabri, M. C. et al. Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep-Sea Res. Pt. II(104), 184–207. https://doi.org/10.1016/j.dsr2.2013.06.016 (2014).

    Article 

    Google Scholar 

  • 18.

    Brooke, S. & Ross, S. W. First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep-Sea Res. Pt. II(104), 245–251 (2014).

    Article 

    Google Scholar 

  • 19.

    Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep-Sea Res. Pt. II(55), 777–787 (2008).

    Article 

    Google Scholar 

  • 20.

    Frederiksen, R., Jensen, A. & Westerberg, H. The distribution of scleratinian coral Lophelia pertusa around the Faroe Islands and the relation to intertidal mixing. Sarsia 77, 157–171 (1992).

    Article 

    Google Scholar 

  • 21.

    Hebbeln, D. et al. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11, 1799–1815. https://doi.org/10.5194/bg-11-1799-2014 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Wienberg, C. et al. Franken Mound: Facies and biocoenoses on a newly-discovered “carbonate mound” on the western Rockall Bank, NE Atlantic. Facies 54, 1–24. https://doi.org/10.1007/s10347-007-0118-0 (2008).

    Article 

    Google Scholar 

  • 23.

    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51. https://doi.org/10.1016/j.csr.2012.12.013 (2013).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Fanelli, E. et al. Cold-water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): Historical and recent findings. Aquat. Conserv. 27, 965–975. https://doi.org/10.1002/aqc.2751 (2017).

    Article 

    Google Scholar 

  • 25.

    Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res. Pt. II(99), 36–41. https://doi.org/10.1016/j.dsr2.2013.05.025 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Movilla, J. et al. Resistance of two mediterranean cold-water coral species to low-pH conditions. Water 6, 59–67 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxgen change. J. Exp. Mar. Biol. Ecol. 349, 205–214 (2007).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1. https://doi.org/10.3389/fmars.2014.00078 (2014).

  • 29.

    Ramos, A., Sanz, J. L., Ramil, F., Agudo, L. M. & Presas-Navarro, C. in Deep-Sea Ecosystems Off Mauritania: Research of Marine Biodiversity and Habitats in the Northwest African Margin (eds. Ramos, A., Ramil, F., & Sanz, J.L.) 481–525 (Springer, 2017).

  • 30.

    Wienberg, C. et al. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quat. Sci. Rev. 185, 135–152. https://doi.org/10.1016/j.quascirev.2018.02.012 (2018).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Hanz, U. et al. Environmental factors influencing cold-water coral ecosystems in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences 16, 4337–4356 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Hebbeln, D. et al. Cold-water coral reefs thriving under hypoxia. Coral Reefs 39, 853–859. https://doi.org/10.1007/s00338-020-01934-6 (2020).

    Article 

    Google Scholar 

  • 33.

    Montero-Serrano, J.-C. et al. Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay). Earth Planet. Sci. Lett. 364, 134–144. https://doi.org/10.1016/j.epsl.2013.01.012 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata cold-water coral species maintained in aquaria. Coral Reefs 27, 255 (2008).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Sabatier, P. et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9, 1253–1265. https://doi.org/10.5194/bg-9-1253-2012 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Sweetman, A. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Sci. Anthrop. 5, 4. https://doi.org/10.1525/elementa.203 (2017).

    Article 

    Google Scholar 

  • 37.

    Lexerød, N. L. Recruitment models for different tree species in Norway. For. Ecol. Manag. 206, 91–108. https://doi.org/10.1016/j.foreco.2004.11.001 (2005).

    Article 

    Google Scholar 

  • 38.

    Georgian, S. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. 37. https://doi.org/10.1111/maec.12373 (2016).

  • 39.

    Tamborrino, L. et al. Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone. Geology 47, 1185–1188. https://doi.org/10.1130/g46672.1 (2019).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Büscher, J., Form, A. & Riebesell, U. Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00101 (2017).

  • 41.

    Connolly, S., Lopez-Yglesias, M. & Anthony, K. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31. https://doi.org/10.1007/s00338-012-0925-9 (2012).

  • 42.

    Middelburg, J. J. et al. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci. Rep. 5, 17962. https://doi.org/10.1038/srep17962 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Wienberg, C. & Titschack, J. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A., & del Valle, C.O.S.) 699–732 (Springer, 2017).

  • 44.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Levitus, S. & Mishonov, A. World Ocean Atlas 2013 (Vers. 2). NOAA Atlas NESDIS 73. National Oceanographic Data Center, Ocean Climate Laboratory United States, National Environmental Satellite Data Information Service (2013).

  • 46.

    Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res. Pt. I(54), 1655–1674 (2007).

    Article 

    Google Scholar 

  • 47.

    Sanfilippo, R. et al. Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59. https://doi.org/10.1007/s10347-012-0356-7 (2013).

  • 48.

    Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747. https://doi.org/10.1111/eva.12676 (2018).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Boavida, J., Becheler, R., Addamo, A. M., Sylvestre, F. & Arnaud-Haond, S. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) (Springer, 2019).

  • 50.

    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535. https://doi.org/10.1146/annurev-marine-120709-142756 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Frank, N. et al. Northeastern Atlantic cold-water coral reefs and climate. Geology 39, 743–746. https://doi.org/10.1130/g31825.1 (2011).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Hebbeln, D. et al. ANNA cold-water coral ecosystems off Angola and Namibia. Cruise No. M122, December 30, 2015–January 31, 2016, Walvis Bay (Namibia) – Walvis Bay (Namibia). METEOR-Berichte, M122. DFG-Senatskommission Ozeanogr. 74. https://doi.org/10.2312/cr_m122 (2017).

  • 53.

    Vad, J., Orejas, C., Moreno-Navas, J., Findlay, H. S. & Roberts, J. M. Assessing the living and dead proportions of cold-water coral colonies: Implications for deep-water marine protected area monitoring in a changing ocean. PeerJ 5, e3705. https://doi.org/10.7717/peerj.3705 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A material difference

    Comparative assessment of amino acids composition in two types of marine fish silage