in

Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models

  • 1.

    Jackson, C. & Robertson, M. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. https://doi.org/10.1016/j.jnc.2010.06.006 (2011).

    Article 

    Google Scholar 

  • 2.

    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011).

    Article 

    Google Scholar 

  • 3.

    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article 

    Google Scholar 

  • 4.

    Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Ouyang, Z., Liu, J., Xiao, H., Tan, Y. & Zhang, H. An assessment of giant panda habitat in Wolong Nature Reserve. Acta Ecol. Sin. 11, 1869–1874 (2001).

    Google Scholar 

  • 6.

    Schadt, S. et al. Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. J. Appl. Ecol. 39, 189–203 (2002).

    Article 

    Google Scholar 

  • 7.

    Su, J., Aryal, A., Nan, Z. & Ji, W. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS One 10, e0138969 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Srivastava, V., Griess, V. C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol. Model. 385, 35–44 (2018).

    Article 

    Google Scholar 

  • 9.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 10.

    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Clements, G. R. et al. Predicting the distribution of the Asian Tapir (Tapirus indicus) in Peninsular Malaysia using maximum entropy modelling. Integr. Zool. 7, 400–406 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12, 2272–2281 (2006).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).

    Article 

    Google Scholar 

  • 14.

    Cassini, M. H. Ecological principles of species distribution models: The habitat matching rule. 2057–2065. https://doi.org/10.1111/j.1365-2699.2011.02552.x (2011).

  • 15.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar 

  • 16.

    Mac Nally, R. Regression and model-building in conservation biology, biogeography and ecology: The distinction between–and reconciliation of–‘predictive’ and ‘explanatory’models. Biodivers. Conserv. 9, 655–671 (2000).

    Article 

    Google Scholar 

  • 17.

    Jaynes, E. T. Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 18.

    Jaynes, E. T. Probability Theory as Logic BT – Maximum Entropy and Bayesian Methods. In (ed. Fougère, P. F.) 1–16 (Springer, Netherlands, 1990). https://doi.org/10.1007/978-94-009-0683-9_1.

  • 19.

    Jaynes, E. T. Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003).

    MATH 
    Book 

    Google Scholar 

  • 20.

    Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).

    Article 

    Google Scholar 

  • 21.

    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.). 30, 550–560 (2007).

    Article 

    Google Scholar 

  • 22.

    Ganeshaiah, K. N. et al. Predicting the potential geographical distribution of the sugarcane woolly aphid Using GARP and DIVA-GIS. Curr. Sci. 85, 1526–1528 (2003).

    Google Scholar 

  • 23.

    Underwood, E. C., Klinger, R. & Moore, P. E. Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Divers. Distrib. 10, 447–459 (2004).

    Article 

    Google Scholar 

  • 24.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).

    Article 

    Google Scholar 

  • 25.

    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Article 

    Google Scholar 

  • 26.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Bhatta, M., Shah, K., Devkota, B., Paudel, R. & Panthi, S. Distribution and habitat preference of Red Panda (Ailurus fulgens fulgens) in Jumla District, Nepal. Open J. Ecol. 04, 989–1001 (2014).

    Article 

    Google Scholar 

  • 28.

    Bista, D. et al. Distribution and habitat use of red panda in the Chitwan-Annapurna Landscape of Nepal. PLoS One 12, e0178797 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Bista, R. & Aryal, A. Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zool. Ecol. 23 (2013).

  • 30.

    Garshelis, D. & Steinmetz, R. Ursus thibetanus. (errata version published in 2017) The IUCN Red List of Threatened Species. 2016: e. T22824A114252336. (2016).

  • 31.

    Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. https://doi.org/10.1371/journal.pone.0203697 (2018).

  • 32.

    CITES. Asiatic Black bear. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/Asiatic_black_bear.html (2019a).

  • 33.

    CITES. Lesser Panda. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/lesser_panda.html (2019b).

  • 34.

    Garshelis, Scheick, B., Doan-Crider, D., Beecham & Obbard, M. Ursus americanus, American Black Bear. The IUCN Red List of Threatened Species 2016: e.T41687A45034604. (2016). https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41687A45034604.en.

  • 35.

    Chhetri, M. Distribution and abundance of Himalayan black bear and brown bear conflict in Manaslu conservation area. https://ntnc.org.np/index.php/publication/distribution-and-ambundance-himalayan-black-bear-and-brown-bear-and-human-bear-conflict (2013).

  • 36.

    Ali, A. et al. An assessment of food habits and altitudinal distribution of the Asiatic black bear (Ursus thibetanus) in the Western Himalayas, Pakistan. J. Nat. Hist. 51, 689–701 (2017).

    Article 

    Google Scholar 

  • 37.

    Glatston, A., Wei, F., Zaw, T. & Sherpa, A. P. IUCN red list of threatened species: Ailurus fulgens. (2015).

  • 38.

    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Chakraborty, R. et al. Status, abundance, and habitat associations of the red panda (Ailurus fulgens) in Pangchen Valley, Arunachal Pradesh, India. Mammalia 79, 25–32 (2015).

    Google Scholar 

  • 40.

    Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the red panda in the temperate forests of Bhutan. PLoS One 6, e26483 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Panthi, S., Aryal, A., Raubenheimer, D., Lord, J. & Adhikari, B. Summer diet and distribution of the Red Panda (Ailurus fulgens fulgens) in Dhorpatan hunting reserve, Nepal. Zool. Stud. 51, 701–709 (2012).

    Google Scholar 

  • 42.

    Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Conserv. 98, 11–18 (2001).

    Article 

    Google Scholar 

  • 43.

    Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. PLoS One 11, e0161717 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Liu, Z. et al. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol. Sin. 33, 7243–7249 (2013).

    Article 

    Google Scholar 

  • 45.

    Bhusal, N. P. Buffer zone management system in protected areas of Nepal. Third Pole J. Geogr. Educ. 34–44 (2012).

  • 46.

    Carpenter, C. & Zomer, R. Forest ecology of the Makalu-Barun National Park and conservation area, Nepal. Mt. Res. Dev. 16, 135–148 (1996).

    Article 

    Google Scholar 

  • 47.

    Bhuju, U. R., Shakya, P. R., Basnet, T. B. & Shrestha, S. Nepal biodiversity resource book: Protected areas, Ramsar sites, and World Heritage sites. (International Centre for Integrated Mountain Development (ICIMOD), 2007).

  • 48.

    Wikipedia. Makalu Barun National Park. https://en.wikipedia.org/w/index.php?title=Makalu_Barun_National_Park&oldid=1022613383 (2020).

  • 49.

    Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13, e0203697 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Chen, X. & Lei, Y. Effects of sample size on accuracy and stability of species distribution models. A Comparison of GARP and Maxent BT – Recent Advances in Computer Science and Information Engineering, Volume 2. in (eds. Qian, Z. et al.) 601–609 (Springer, Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-25789-6_80.

    Chapter 

    Google Scholar 

  • 51.

    Zomer, R., Ustin, S. & Ives, J. Using satellite remote sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal. Int. J. Remote Sens. 23, 125–143 (2002).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Shao, Y. & Lunetta, R. S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 70, 78–87 (2012).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 54.

    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).

    Article 

    Google Scholar 

  • 55.

    Steven, J. P., Miroslav, D. & Robert, E. S. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/Maxent/.

  • 56.

    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography (Cop.) 31, 272–278 (2008).

    Article 

    Google Scholar 

  • 57.

    Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: Current and future scenarios. Ecol. Process. 10, 1–16 (2021).

    Article 

    Google Scholar 

  • 58.

    Pasquale, G. D. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).

    Article 

    Google Scholar 

  • 59.

    Barbet-Massin, M., Jiguet, F., Albert, C. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • 60.

    Adjemian, J. C. Z., Girvetz, E. H., Beckett, L. & Foley, J. E. Analysis of genetic algorithm for rule-set production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of Plague, Yersinia pestis, California. J. Med. Entomol. 43, 93–103 (2006).

    PubMed 

    Google Scholar 

  • 61.

    Barro, A. S. et al. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis. PLoS Negl. Trop. Dis. 10, e0004689 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).

    Article 

    Google Scholar 

  • 63.

    Babar, S., Giriraj, A., Reddy, C. S., Jentsch, A. & Sudhakar, S. Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.). Curr. Sci. 102, 1157–1165 (2012).

    Google Scholar 

  • 64.

    Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. 30, 224–235 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. (2021).

  • 66.

    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).

    Article 

    Google Scholar 

  • 67.

    Chikerema, S., Gwitira, I., Murwira, A., Pfukenyi, D. & Matope, G. Comparison of GARP and Maxent in modelling the geographic distribution of Bacillus anthracis in Zimbabwe. Zimbabwe Vet. J. 35, 1–6 (2017).

    Google Scholar 

  • 68.

    Ray, D., Behera, M. D. & Jacob, J. Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88, 1337–1343 (2018).

    Google Scholar 

  • 69.

    Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).

    Google Scholar 

  • 70.

    Jnawali, S. R. et al. The Status of Nepal’s Mammals: The National Red List Series-IUCN (2011).

  • 71.

    Panthi, S., Wang, T., Sun, Y. & Thapa, A. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006).

    Article 

    Google Scholar 

  • 73.

    Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).

    Article 

    Google Scholar 

  • 74.

    Panthi, S., Aryal, A. & Coogan, S. C. P. Diet and macronutrient niche of Asiatic black bear (Ursus thibetanus) in two regions of Nepal during summer and autumn. Ecol. Evol. 9, 3717–3727 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Thapa, A. et al. The endangered red panda in Himalayas: Potential distribution and ecological habitat associates. Glob. Ecol. Conserv. 21, e00890 (2020).

    Article 

    Google Scholar 

  • 76.

    Shailendra. Human-Bear Conflicts Biological Research Himalayan Black Bear Discovered in Babai Valley of Bardia National. 26, 1999–2001 (2017).

  • 77.

    Acharya, K. P. et al. Pervasive human disturbance on habitats of endangered red panda Ailurus fulgens in the central Himalaya. Glob. Ecol. Conserv. 15, e00420 (2018).

    Article 

    Google Scholar 

  • 78.

    Letro, L., Wangchuk, S. & Dhendup, T. Distribution of Asiatic black bear and its interaction with humans in Jigme Singye Wangchuck National Park, Bhutan. Nat. Conserv. Res. 5, 44–52 (2020).

    Article 

    Google Scholar 

  • 79.

    Karki, S. T. Do protected areas and conservation incentives contribute to sustainable livelihoods? A case study of Bardia National Park, Nepal. 988–999.

  • 80.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Infrared cameras and artificial intelligence provide insight into boiling

    Engineering seeds to resist drought