Cózar, A. et al. Plastic debris in the open ocean. Proc. Nat. Acad. Sci. USA 111, 10239–10244. https://doi.org/10.1073/pnas.1314705111 (2014).
Google Scholar
Lavers, J. L., Dicks, L., Dicks, M. R. & Finger, A. Significant plastic accumulation on the Cocos (Keeling) Islands, Australia. Sci. Rep. 9, 7102. https://doi.org/10.1038/s41598-019-43375-4 (2019).
Google Scholar
Cózar, A. et al. The arctic ocean as a dead end for floating plastics in the north atlantic branch of the thermohaline circulation. Sci. Adv. https://doi.org/10.1126/sciadv.1600582 (2017).
Google Scholar
Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).
Google Scholar
Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).
Google Scholar
Chiba, S. et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy 96, 204–212. https://doi.org/10.1016/j.marpol.2018.03.022 (2018).
Google Scholar
Bergmann, M., Tekman, M. & Gutow, L. Sea change for plastic pollution. Nature 544, 297 (2017).
Google Scholar
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771. https://doi.org/10.1126/science.1260352 (2015).
Google Scholar
Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).
Google Scholar
Camphuysen, C. J. Northern Gannets Morus bassanus found dead in the Netherlands, 1970–2000. Atlantic Seabirds 3, 15–30 (2001).
Gregory, M. R. Environmental implications of plastic debris in marine settings–entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Phil. Trans. R. Soc. B 364, 2013–2025 (2009).
Google Scholar
Ryan, P. G. The effects of ingested plastic on seabirds: Correlations between plastic load and body condition. Environ. Pollut. 46, 119–125 (1987).
Google Scholar
Ryan, P. G. Effects of ingested plastic on seabird feeding: Evidence from chickens. Mar. Pollut. Bull. 19, 125–128 (1988).
Google Scholar
Pierce, K. E., Harris, R. J., Larned, L. S. & Pokras, M. A. Obstruction and starvation associated with plastic ingestion in a Northern Gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar. Ornithol. 32, 187–189 (2004).
Ryan, P. G., Connell, A. D. & Gardner, B. D. Plastic ingestion and PCBs in seabirds: Is there a relationship?. Mar. Pollut. Bull. 19, 174–176 (1988).
Google Scholar
Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): Implications for chick body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124–129. https://doi.org/10.1016/j.envpol.2013.12.020 (2014).
Google Scholar
Tanaka, K. et al. In vivo accumulation of plastic-derived chemicals into seabird tissues. Curr. Biol. 30, 723-728.e3. https://doi.org/10.1016/j.cub.2019.12.037 (2020).
Google Scholar
Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. B 364, 2027–2045 (2009).
Google Scholar
Tanaka, K., van Franeker, J. A., Deguchi, T. & Takada, H. Piece-by-piece analysis of additives and manufacturing byproducts in plastics ingested by seabirds: Implication for risk of exposure to seabirds. Mar. Pollut. Bull. 145, 36–41. https://doi.org/10.1016/j.marpolbul.2019.05.028 (2019).
Google Scholar
Thiel, M. & Gutow, L. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. Annu. Rev. 42, 181–264 (2005).
Kiessling, T., Gutow, L. & Thiel, M. Marine litter as habitat and dispersal vector. In: Bergmann M, Gutow L, Klages M, editors. Marine Anthropogenic Litter. p. 141–80 (2015).
Day, R. H. & Shaw, D. G. Patterns of abundance of pelagic plastic and tar in the North Pacific Ocean, 1976–1985. Mar. Pollut. Bull. 18, 311–316 (1987).
Google Scholar
Pichel, W. G. et al. Marine debris collects within the North Pacific Subtropical Convergence Zone. Mar. Pollut. Bull. 54, 1207–1211 (2007).
Google Scholar
Yamashita, R. & Tanimura, A. Floating plastic in the Kuroshio Current area, western North Pacific Ocean. Mar. Pollut. Bull. 54, 485–488 (2007).
Google Scholar
Titmus, A. J. & Hyrenbach, K. D. Habitat associations of floating debris and marine birds in the North East Pacific Ocean at coarse and meso spatial scales. Mar. Pollut. Bull. 62, 2496–2506 (2011).
Google Scholar
Goldstein, M. C., Titmus, A. J. & Ford, M. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean. PLoS ONE 8, e80020 (2013).
Google Scholar
Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).
Google Scholar
IUCN. The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org (2020).
Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493–500. https://doi.org/10.1016/j.marpolbul.2016.06.001 (2016).
Google Scholar
Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. 9, 3202. https://doi.org/10.1038/s41598-018-36585-9 (2019).
Google Scholar
Jouventin, P. & Weimerskirch, H. Satellite tracking of wandering albatrosses. Nature 343, 746–748 (1990).
Google Scholar
Kappes, M. A. et al. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog. Oceanogr. 86, 246–260 (2010).
Google Scholar
Sakamoto, K. Q., Takahashi, A., Iwata, T. & Trathan, P. N. From the eye of the albatrosses: A bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean. PLoS ONE 4, e7322 (2009).
Google Scholar
Fukuoka, T. et al. The feeding habit of sea turtles influences their reaction to artificial marine debris. Sci. Rep. 6, 28015. https://doi.org/10.1038/srep28015 (2016).
Google Scholar
Nishizawa, B. et al. Albatross-borne loggers show feeding on deep-sea squids: Implications for the study of squid distributions. Mar. Ecol. Prog. Ser. 592, 257–265 (2018).
Google Scholar
Hunt, G. L. Jr. & Schneider, D. Scale-dependent processes in the physical and biological environment of marine birds. In Seabirds: Feeding Ecology and Role in Marine Ecosystems (ed. Croxall, J. P.) 7–41 (Cambridge University Press, 1987).
Pinaud, D. & Weimerskirch, H. At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: A comparative study. J. Anim. Ecol. 76, 9–19 (2007).
Google Scholar
Thiebot, J.-B., Nishizawa, B., Sato, F., Tomita, N. & Watanuki, Y. Albatross chicks reveal interactions of adults with artisanal longline fisheries within a short range. J. Ornithol. 159, 935–944 (2018).
Google Scholar
Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. www.fishbase.org, version (12/2019).
Ryan, P. G. A simple technique for counting marine debris at sea reveals steep litter gradients between the Straits of Malacca and the Bay of Bengal. Mar. Pollut. Bull. 69, 128–136 (2013).
Google Scholar
Mitani, Y. et al. Marine debris observed in the North Pacific during Oshoro-maru cruise in 2012. Bull. Fish. Sci. Hokkaido Univ. 64, 25–29 (2014).
Hyrenbach, K. D. et al. Plastic ingestion by Black-footed albatross from Kure Atoll, Hawai’i: linking chick loads and parental at-sea distributions. Mar. Ornithol. 45, 225–236 (2017).
Nevitt, G. A., Losekoot, M. & Weimerskirch, H. Evidence for olfactory search in wandering albatross, Diomedea Exulans. Proc. Nat. Acad. Sci. USA 105, 4576–4581 (2008).
Google Scholar
Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).
Google Scholar
Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law—The importance of plastic color. Environ. Pollut. 214, 585–588 (2016).
Google Scholar
Castro, J. J., Santiago, J. A. & Santana-Ortega, A. T. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish Biol. Fish. 11, 255–277 (2002).
Google Scholar
Harrison, C. S., Hida, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 1–71 (1983).
Hunte, W., Oxenford, H. A. & Mahon, R. Distribution and relative abundance of flyingfish (Exocoetidae) in the eastern Caribbean. II. Spawning substrata, eggs and larvae. Mar. Ecol. Prog. Ser. 117, 25–37 (1995).
Google Scholar
Rapp, D. C., Youngren, S. M., Hartzell, P. & Hyrenbach, K. D. Community-wide patterns of plastic ingestion in seabirds breeding at French Frigate Shoals Northwestern Hawaiian Islands. Mar. Pollut. Bull. 123, 269–278 (2017).
Google Scholar
Douglas, D. & Peucker, T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cannadian Cartogr. 10, 112–122 (1973).
Google Scholar
Edelhoff, H., Signer, J. & Balkenhol, N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Move. Ecol. 4, 21 (2016).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html (2020).
Source: Ecology - nature.com