Elson, C. S. The Ecology of Invasions by Animals and Plants (Springer Nature, 2020).
Riccardi, A. & Atkinson, S. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7, 781–784. https://doi.org/10.1111/j.1461-0248.2004.00642.x (2004).
Google Scholar
Ricciardi, A. & Ryan, R. The exponential growth of invasive species denialism. Biol. Invasions 20, 549–553. https://doi.org/10.1007/s10530-017-1561-7 (2018).
Google Scholar
Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800. https://doi.org/10.1038/s41559-019-0851-0 (2019).
Google Scholar
Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154. https://doi.org/10.1038/474153a (2011).
Google Scholar
Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).
Google Scholar
Hutchings, J. A. Unintentional selection, unanticipated insights: Introductions, stocking and the evolutionary ecology of fishes. J. Fish Biol. 85, 1907–1926 (2014).
Google Scholar
Frenot, Y. et al. Biological invasions in the Antarctic: Extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).
Google Scholar
MacCrimmon, H. R. & Marshall, T. World distribution of brown trout, Salmo trutta. J. Fish. Board Can. 25, 2527–2548 (1968).
Google Scholar
Labonne, J. et al. Invasion dynamics of a fish-free landscape by brown trout (Salmo trutta). PLoS ONE 8, 1–7 (2013).
Google Scholar
Lecomte, F., Beall, E., Chat, J., Davaine, P. & Gaudin, P. The complete history of salmonid introductions in the Kerguelen Islands, Southern Ocean. Polar Biol. 36, 457–475. https://doi.org/10.1007/s00300-012-1281-5 (2013).
Google Scholar
de Leaniz, C. G., Gajardo, G. & Consuergra, S. From Best to Pest: changing perspectives on the impact of exotic salmonids in the Southern Hemisphere. Syst. Biodivers. 8, 447–459 (2010).
Google Scholar
Lésel, R. & Derenne, P. Introducing animals to Iles Kerguelen. Polar Rec. 17, 485–494 (1975).
Google Scholar
Monzón-Argüello, C. et al. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere. Evol. Appl. 71, 921–936. https://doi.org/10.1111/eva.12188 (2014).
Google Scholar
Stewart, L. A history of migratory salmon acclimatization experiments in parts of the Southern Hemisphere and the possible effects of oceanic currents and gyres upon their outcome. Adv. Mar. Biol. 17, 397–466. https://doi.org/10.1016/S0065-2881(08)60305-3 (1980).
Google Scholar
Grobbelaar, J. U. The lentic and lotic freshwater types of Marion Island (sub-Antarctic): A limnological study. Verhandlungen Inte. Vereinigung Limnol. 19, 949–951. https://doi.org/10.1080/03680770.1974.11896202 (1975).
Google Scholar
Grobbelaar, J. U. Factors limiting the algal growth on the sub-Antarctic island Marion. Verhandlungen Int. Vereinigung Limnol. 20, 1159–1164. https://doi.org/10.1080/03680770.1977.11896666 (1978).
Google Scholar
Lèsel, R., Therezien, Y. & Vibert, R. Introduction de salmonide´s aux Iˆles Kerguelen: Premiers re´sultats et observations pre´liminaires. Ann. d’Hydrobiol. 2, 275–304 (1971).
Wojtenka, J. & van Steenberghe, F. Variations nycthe´me´rales et saisonnie`res de la faune en place et en de´rive, strate´gie alimentaire de la truite (Salmo trutta L.) dans une petite rivie`re des ıˆles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–442 (1981).
Cooper, J., Crafford, J. E. & Hecht, T. Introduction and extinction of brown trout (Salmo trutta L.) in an impoverished subantarctic stream. Antarct. Sci. 4, 9–14 (1992).
Google Scholar
Jonsson, B. & Jonsson, N. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories (Springer, 2011).
Google Scholar
Boel, M. et al. The physiological basis of the migration continuum in brown trout (Salmo trutta). Physiol. Biochem. Zool. 87, 334–345 (2014).
Google Scholar
Cucherousset, J., Ombredane, D., Charles, K., Marchand, F. & Bagliniere, J.-L. A continuum of life history tactics in a brown trout Salmo trutta population. Can. J. Fish. Aquat. Sci. 62, 1600–1610 (2005).
Google Scholar
del Villar-Guerra, D., Aarestrup, K., Skov, C. & Koed, A. Marine migrations in anadromous brown trout (Salmo trutta): Fjord residency as a possible alternative in the continuum of migration to the open sea. Ecol. Freshw. Fish 23, 594–693. https://doi.org/10.1111/eff.12110 (2014).
Google Scholar
Eldøy, S. H. et al. Marine migration and habitat use of anadromous brown trout Salmo trutta. Can. J. Fish. Aquat. Sci. 72, 1366–1378. https://doi.org/10.1139/cjfas-2014-0560 (2015).
Google Scholar
Flaten, A. C. et al. The first months at sea: Migration and habitat use of sea trout Salmo trutta post-smolts. J. Fish Biol. 89, 1624–1640. https://doi.org/10.1111/jfb.13065 (2016).
Google Scholar
Bordeleau, X. et al. Nutritional correlates of spatio-temporal variations in the marine habitat use of brown trout, Salmo trutta, veteran migrants. Can. J. Fish. Aquat. Sci. 75, 1744–1754. https://doi.org/10.1139/cjfas-2017-0350 (2018).
Google Scholar
Eldøy, S. H. et al. The effects of nutritional state, sex and body size on the marine migration behaviour of sea trout. Mar. Ecol. Prog. Ser. 665, 185–200 (2021).
Google Scholar
McDowall, R. M., Allibone, R. M. & Chadderton, W. L. Issues for the conservation and management of Falkland Islands freshwater fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 473–486. https://doi.org/10.1002/aqc.499 (2001).
Google Scholar
Dartnall, H. J. G. The freshwater fauna of the souht polar region: A 140-year review. Pap. Proc. R. Soc. Tasman. 15, 19–57 (2017).
Berthier, E., Le Bris, R., Mabileau, L., Testut, L. & Rémy, F. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. J. Geophys. Res. 114, 1–14. https://doi.org/10.1029/2008JF001192 (2009).
Google Scholar
Frenot, Y., Gloaguen, J. C., Picot, G., Bougere, J. & Benjamin, D. Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia 95, 140–144 (1993).
Google Scholar
Delettre, Y. Biologie et écologie de Limnophyes pusillus Eaton, 1875 (Diptera, Chironomidae) aux Iles Kerguelen 1- Présentation générale et étude des populations larvaires. Rev. d’Ecol. Biol. Sol 15, 475–486 (1978).
Gay, C. Ecologie du zooplancton d’eau douce des Iles Kerguelen: 1- Caractéristiques du milieu et inventaire des entomostracés. Com. Natl. Franç. Rech. Antarct. 47, 43–57 (1981).
Wojtenka, J. & Van Steenberghe, F. Variations nycthémérales et saisonnières de la faune en place et en derive, stratégie alimentaire de la truite (Salmo trutta L.) dans une petite rivière des Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–423 (1982).
Davidsen, J. G. et al. (Portail Data INRAE, 2020).
Labonne, J. et al. From the bare minimum: Genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17, 21–34 (2016).
Frenot, Y., Gloaguen, J. C. & Trehen, P. in Antarctic Communities: Species, Structure and Survival, Vol. 358–366 (eds B. Battaglia, J. Valencia, & D.W.H. Walton) (Cambridge University Press, 1997).
Huston, A. H. in Methods for Fish Biology (eds C.B. Schreck & P.B. Moyle) 273–343 (American Fisheries Society, 1990).
Davidsen, J. G. et al. Can sea trout Salmo trutta compromise successful eradication of Gyrodactylus salaris by hiding from CFT Legumin (rotenone) treatments?. J. Fish Biol. 82, 1411–1418. https://doi.org/10.1111/jfb.12065 (2013).
Google Scholar
Gauthey, Z. et al. The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta). Comp. Biochem. Physiol. A 184, 90–96 (2015).
Google Scholar
Quéméré, E. et al. An improved PCR-based method for faster sex determination in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Conserv. Genet. Resour. 6, 825–827. https://doi.org/10.1007/s12686-014-0259-8 (2014).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Kruger, N. J. in The Protein Protocols Handbook (ed J.M. Walker) 17–24 (Humana Press, 2009).
Davidsen, J. G. et al. Marine trophic niche-use and life history diversity among Arctic charr Salvelinus alpinus in southwestern Greenland. J. Fish Biol. 96, 681–692 (2020).
Google Scholar
Eldøy, S. H., Davidsen, J. G., Vignon, M. & Power, M. The biology and feeding ecology of Arctic charr in the Kerguelen Islands. J. Fish Biol. 98, 526–536. https://doi.org/10.1111/jfb.14596 (2020).
Google Scholar
Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).
Google Scholar
Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983).
Google Scholar
Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropical river. River Res. Appl. 29, 560–573 (2013).
Google Scholar
Hyslop, E. J. Stomach contents analysis: A review of methods and their application. J. Fish Biol. 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x (1980).
Google Scholar
Závorka, L., Slavík, O. & Horký, P. Validation of scale-reading estimates of age and growth in a brown trout Salmo trutta population. Biologia 69, 691–695. https://doi.org/10.2478/s11756-014-0356-x (2014).
Google Scholar
Pincock, D. G. False Detections: What they are and how to remove them from detection data. Vemco Appl. Note 1, 1–11 (2012).
France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).
Google Scholar
Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).
Google Scholar
Wissel, B. & Fry, B. Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecologi 144, 659–672. https://doi.org/10.1007/s00442-005-0119-z (2005).
Google Scholar
Kline, T. T., Wilson, W. J. & Goering, J. J. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Aquat. Sci. 55, 1494–1502 (1998).
Google Scholar
Phillips, D. L. Converting isotope values to diet composition: the use of mixing models. J. Mammal. 93, 342–352 (2012).
Google Scholar
Schawarcz, H. P. Some theoretical aspects of isotope paleodiet studies. J. Archaeol. Sci. 18, 261–275 (1991).
Google Scholar
Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
Google Scholar
Saucède, T. et al. in The Kerguelen Plateau: Marine Ecosystem and Fisheries. Proceedings of the Second Symposium (eds D. Welsford, J. Dell, & G. Duhamel) 95–116 (Australian Antarctic Division, 2019).
Batschelet, E. Circular Statistics in Biology. (Academic Press, 1981).
Zar, J. H. Bisostatistical Analysis. 5th edn, (Prentice-Hall/Pearson, 2010).
Cherel, Y., Ducatez, S., Fontaine, C., Richard, P. & Guinet, C. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar. Ecol. Prog. Ser. 370, 239–247 (2008).
Google Scholar
Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).
Google Scholar
Ciancio, J., Beauchamp, D. A. & Pascuala, M. Marine effect of introduced salmonids: Prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnol. Oceanogr. 55, 2181–2192 (2010).
Google Scholar
Thorstad, E. B. et al. Marine life of the sea trout. Mar. Biol. 163(47), 1–19. https://doi.org/10.1007/s00227-016-2820-3 (2016).
Google Scholar
Závorka, L., Koeck, B., Killen, S. S. & Kainz, M. J. Aquatic predators influence flux of essential micronutrients. Trends Ecol. Evol. 34, 880–881 (2019).
Google Scholar
Colombo, S. M., Wacker, A., Parrish, C. C., Kainz, M. J. & Arts, M. T. A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environ. Rev. 25, 163–174. https://doi.org/10.1139/er-2016-0062 (2017).
Google Scholar
Jarry, M. et al. Sea trout (Salmo trutta) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934 (2018).
Google Scholar
O’Neal, A. L. & Stanford, J. A. Partial migration in a robust brown trout population of a Patagonian river. Trans. Am. Fish. Soc. 140, 623–635 (2011).
Google Scholar
Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).
Google Scholar
Jonsson, B. & Jonsson, N. Partial migration: niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365 (1993).
Google Scholar
Newton, C. The Trouts Tale. The Fish that Followed an Empire. 218 (The Medlar Press, 2013).
Davidsen, J. G. et al. Does reduced feeding prior to release improve the marine migration of hatchery brown trout Salmo trutta L. smolts?. J. Fish Biol. 85, 1992–2002 (2014).
Google Scholar
Westley, P. A. H. & Fleming, I. A. Landscape factors that shape a slow and persistent aquatic invasion: Brown trout in Newfoundland 1883–2010. Biodivers. Res. 17, 566–579 (2011).
Larsson, S. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta: Implications for their niche segregation. Environ. Biol. Fishes 73, 89–96 (2005).
Google Scholar
Elliot, J. M. Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshwat. Biol. 44, 237–245 (2000).
Google Scholar
Elliot, J. M. & Hurley, M. A. Optimum energy intake and gross efficiency of energy conversion for brown trout, Salmo trutta, feeding on invertebrates or fish. Freshwat. Biol. 44, 605–615 (2000).
Google Scholar
Jensen, J. L. A. et al. Water temperatures influence the marine area use of Salvelinus alpinus and Salmo trutta. J. Fish Biol. 84, 1640–1653. https://doi.org/10.1111/jfb.12366 (2014).
Google Scholar
Rikardsen, A. H. et al. The marine temperature and depth preferences of Arctic charr and sea trout, as recorded by data storage tags. Fish. Oceanogr. 16, 436–447. https://doi.org/10.1111/j.1365-2419.2007.00445.x (2007).
Google Scholar
Chernitsky, A. G., Zabruskov, G. V., Ermolaev, V. V. & Shkurko, D. S. Life history of trout, Salmo trutta L., in the Varsina River estuary, (The Barents Sea). Nord. J. Freshw. Res. 71, 183–189 (1995).
Honkanen, H. M. et al. Summer survival and activity patterns of estuary feeding anadromous Salmo trutta. Ecol. Freshwat. Fish 29, 31–39 (2020).
Google Scholar
Thomas, T., Davaine, P. & Beall, E. Dynamique de la migration et reproduction de la truite de mer, Salmo trutta L., dans la Rivière Norvégienne Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 47, 5–42 (1981).
Beall, E. & Davaine, P. Analyse scalimetrique de la truite de mer (Salmo trutta L.): formation des anneaux et criteres d’identification chez les individus sedentaires et migrateurs d’une meme population acclimatee aux iles Kerguelen (TAAF). Aquat. Living Resour. 1, 3–16 (1988).
Google Scholar
Ciancio, J. E., Pascual, M. A., Botto, F., Frere, E. & Iribarne, O. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol. Oceanogr. 53, 788–798 (2008).
Google Scholar
Davidsen, J. G. et al. Trophic niche variation among sea trout Salmo trutta in Central Norway investigated by three different time-integrated trophic tracers. J. Aquat. Biol. 26, 217–227. https://doi.org/10.3354/ab00689 (2017).
Google Scholar
Elliott, J. A. Stomach contents of adult sea trout caught in six English rivers. J. Fish Biol. 50, 1129–1132 (1997).
Knutsen, J. A., Knutsen, H., Gjøsæter, J. & Jonsson, B. Food of anadromous brown trout at sea. J. Fish Biol. 59, 533–543 (2001).
Google Scholar
Rikardsen, A. H. et al. Temporal variability in marine feeding of sympatric Arctic charr and sea trout. J. Fish Biol. 70, 837–847 (2007).
Google Scholar
Grønvik, S. & Klemetsen, A. Marine food and diet overlap of Co-occuring Arctic charr (Salvelinus alpinus L.), brown trout (Salmo trutta L.) and Atlantic salmon (S. salar L.) off Senja, N. Norway. Polar Biol. 7, 173–177 (1987).
Google Scholar
Aulus-Giacosa, L. Spatio-temporal evolution of life history traits related to dispersal. Brown trout (Salmo trutta L.) colonization of the sub-Antarctic Kerguelen Islands PhD thesis, Université de Pau et des Pays de l’Adour (2021).
Cherel, Y., Fontaine, C., Richard, P., Labat, J. P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332. (2010).
Source: Ecology - nature.com