in

Marine habitat use and feeding ecology of introduced anadromous brown trout at the colonization front of the sub-Antarctic Kerguelen archipelago

  • 1.

    Elson, C. S. The Ecology of Invasions by Animals and Plants (Springer Nature, 2020).

    Google Scholar 

  • 2.

    Riccardi, A. & Atkinson, S. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7, 781–784. https://doi.org/10.1111/j.1461-0248.2004.00642.x (2004).

    Article 

    Google Scholar 

  • 3.

    Ricciardi, A. & Ryan, R. The exponential growth of invasive species denialism. Biol. Invasions 20, 549–553. https://doi.org/10.1007/s10530-017-1561-7 (2018).

    Article 

    Google Scholar 

  • 4.

    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800. https://doi.org/10.1038/s41559-019-0851-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154. https://doi.org/10.1038/474153a (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).

    Article 

    Google Scholar 

  • 7.

    Hutchings, J. A. Unintentional selection, unanticipated insights: Introductions, stocking and the evolutionary ecology of fishes. J. Fish Biol. 85, 1907–1926 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Frenot, Y. et al. Biological invasions in the Antarctic: Extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    MacCrimmon, H. R. & Marshall, T. World distribution of brown trout, Salmo trutta. J. Fish. Board Can. 25, 2527–2548 (1968).

    Article 

    Google Scholar 

  • 10.

    Labonne, J. et al. Invasion dynamics of a fish-free landscape by brown trout (Salmo trutta). PLoS ONE 8, 1–7 (2013).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Lecomte, F., Beall, E., Chat, J., Davaine, P. & Gaudin, P. The complete history of salmonid introductions in the Kerguelen Islands, Southern Ocean. Polar Biol. 36, 457–475. https://doi.org/10.1007/s00300-012-1281-5 (2013).

    Article 

    Google Scholar 

  • 12.

    de Leaniz, C. G., Gajardo, G. & Consuergra, S. From Best to Pest: changing perspectives on the impact of exotic salmonids in the Southern Hemisphere. Syst. Biodivers. 8, 447–459 (2010).

    Article 

    Google Scholar 

  • 13.

    Lésel, R. & Derenne, P. Introducing animals to Iles Kerguelen. Polar Rec. 17, 485–494 (1975).

    Article 

    Google Scholar 

  • 14.

    Monzón-Argüello, C. et al. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere. Evol. Appl. 71, 921–936. https://doi.org/10.1111/eva.12188 (2014).

    Article 

    Google Scholar 

  • 15.

    Stewart, L. A history of migratory salmon acclimatization experiments in parts of the Southern Hemisphere and the possible effects of oceanic currents and gyres upon their outcome. Adv. Mar. Biol. 17, 397–466. https://doi.org/10.1016/S0065-2881(08)60305-3 (1980).

    Article 

    Google Scholar 

  • 16.

    Grobbelaar, J. U. The lentic and lotic freshwater types of Marion Island (sub-Antarctic): A limnological study. Verhandlungen Inte. Vereinigung Limnol. 19, 949–951. https://doi.org/10.1080/03680770.1974.11896202 (1975).

    Article 

    Google Scholar 

  • 17.

    Grobbelaar, J. U. Factors limiting the algal growth on the sub-Antarctic island Marion. Verhandlungen Int. Vereinigung Limnol. 20, 1159–1164. https://doi.org/10.1080/03680770.1977.11896666 (1978).

    Article 

    Google Scholar 

  • 18.

    Lèsel, R., Therezien, Y. & Vibert, R. Introduction de salmonide´s aux Iˆles Kerguelen: Premiers re´sultats et observations pre´liminaires. Ann. d’Hydrobiol. 2, 275–304 (1971).

    Google Scholar 

  • 19.

    Wojtenka, J. & van Steenberghe, F. Variations nycthe´me´rales et saisonnie`res de la faune en place et en de´rive, strate´gie alimentaire de la truite (Salmo trutta L.) dans une petite rivie`re des ıˆles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–442 (1981).

    Google Scholar 

  • 20.

    Cooper, J., Crafford, J. E. & Hecht, T. Introduction and extinction of brown trout (Salmo trutta L.) in an impoverished subantarctic stream. Antarct. Sci. 4, 9–14 (1992).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Jonsson, B. & Jonsson, N. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories (Springer, 2011).

    Book 

    Google Scholar 

  • 22.

    Boel, M. et al. The physiological basis of the migration continuum in brown trout (Salmo trutta). Physiol. Biochem. Zool. 87, 334–345 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Cucherousset, J., Ombredane, D., Charles, K., Marchand, F. & Bagliniere, J.-L. A continuum of life history tactics in a brown trout Salmo trutta population. Can. J. Fish. Aquat. Sci. 62, 1600–1610 (2005).

    Article 

    Google Scholar 

  • 24.

    del Villar-Guerra, D., Aarestrup, K., Skov, C. & Koed, A. Marine migrations in anadromous brown trout (Salmo trutta): Fjord residency as a possible alternative in the continuum of migration to the open sea. Ecol. Freshw. Fish 23, 594–693. https://doi.org/10.1111/eff.12110 (2014).

    Article 

    Google Scholar 

  • 25.

    Eldøy, S. H. et al. Marine migration and habitat use of anadromous brown trout Salmo trutta. Can. J. Fish. Aquat. Sci. 72, 1366–1378. https://doi.org/10.1139/cjfas-2014-0560 (2015).

    Article 

    Google Scholar 

  • 26.

    Flaten, A. C. et al. The first months at sea: Migration and habitat use of sea trout Salmo trutta post-smolts. J. Fish Biol. 89, 1624–1640. https://doi.org/10.1111/jfb.13065 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Bordeleau, X. et al. Nutritional correlates of spatio-temporal variations in the marine habitat use of brown trout, Salmo trutta, veteran migrants. Can. J. Fish. Aquat. Sci. 75, 1744–1754. https://doi.org/10.1139/cjfas-2017-0350 (2018).

    Article 

    Google Scholar 

  • 28.

    Eldøy, S. H. et al. The effects of nutritional state, sex and body size on the marine migration behaviour of sea trout. Mar. Ecol. Prog. Ser. 665, 185–200 (2021).

    ADS 
    Article 

    Google Scholar 

  • 29.

    McDowall, R. M., Allibone, R. M. & Chadderton, W. L. Issues for the conservation and management of Falkland Islands freshwater fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 473–486. https://doi.org/10.1002/aqc.499 (2001).

    Article 

    Google Scholar 

  • 30.

    Dartnall, H. J. G. The freshwater fauna of the souht polar region: A 140-year review. Pap. Proc. R. Soc. Tasman. 15, 19–57 (2017).

    Google Scholar 

  • 31.

    Berthier, E., Le Bris, R., Mabileau, L., Testut, L. & Rémy, F. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. J. Geophys. Res. 114, 1–14. https://doi.org/10.1029/2008JF001192 (2009).

    Article 

    Google Scholar 

  • 32.

    Frenot, Y., Gloaguen, J. C., Picot, G., Bougere, J. & Benjamin, D. Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia 95, 140–144 (1993).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Delettre, Y. Biologie et écologie de Limnophyes pusillus Eaton, 1875 (Diptera, Chironomidae) aux Iles Kerguelen 1- Présentation générale et étude des populations larvaires. Rev. d’Ecol. Biol. Sol 15, 475–486 (1978).

    Google Scholar 

  • 34.

    Gay, C. Ecologie du zooplancton d’eau douce des Iles Kerguelen: 1- Caractéristiques du milieu et inventaire des entomostracés. Com. Natl. Franç. Rech. Antarct. 47, 43–57 (1981).

    Google Scholar 

  • 35.

    Wojtenka, J. & Van Steenberghe, F. Variations nycthémérales et saisonnières de la faune en place et en derive, stratégie alimentaire de la truite (Salmo trutta L.) dans une petite rivière des Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 51, 413–423 (1982).

    Google Scholar 

  • 36.

    Davidsen, J. G. et al. (Portail Data INRAE, 2020).

  • 37.

    Labonne, J. et al. From the bare minimum: Genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17, 21–34 (2016).

    Google Scholar 

  • 38.

    Frenot, Y., Gloaguen, J. C. & Trehen, P. in Antarctic Communities: Species, Structure and Survival, Vol. 358–366 (eds B. Battaglia, J. Valencia, & D.W.H. Walton) (Cambridge University Press, 1997).

  • 39.

    Huston, A. H. in Methods for Fish Biology (eds C.B. Schreck & P.B. Moyle) 273–343 (American Fisheries Society, 1990).

  • 40.

    Davidsen, J. G. et al. Can sea trout Salmo trutta compromise successful eradication of Gyrodactylus salaris by hiding from CFT Legumin (rotenone) treatments?. J. Fish Biol. 82, 1411–1418. https://doi.org/10.1111/jfb.12065 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Gauthey, Z. et al. The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta). Comp. Biochem. Physiol. A 184, 90–96 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Quéméré, E. et al. An improved PCR-based method for faster sex determination in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Conserv. Genet. Resour. 6, 825–827. https://doi.org/10.1007/s12686-014-0259-8 (2014).

    Article 

    Google Scholar 

  • 43.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Kruger, N. J. in The Protein Protocols Handbook (ed J.M. Walker) 17–24 (Humana Press, 2009).

  • 45.

    Davidsen, J. G. et al. Marine trophic niche-use and life history diversity among Arctic charr Salvelinus alpinus in southwestern Greenland. J. Fish Biol. 96, 681–692 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Eldøy, S. H., Davidsen, J. G., Vignon, M. & Power, M. The biology and feeding ecology of Arctic charr in the Kerguelen Islands. J. Fish Biol. 98, 526–536. https://doi.org/10.1111/jfb.14596 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Mariotti, A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropical river. River Res. Appl. 29, 560–573 (2013).

    Article 

    Google Scholar 

  • 50.

    Hyslop, E. J. Stomach contents analysis: A review of methods and their application. J. Fish Biol. 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x (1980).

    Article 

    Google Scholar 

  • 51.

    Závorka, L., Slavík, O. & Horký, P. Validation of scale-reading estimates of age and growth in a brown trout Salmo trutta population. Biologia 69, 691–695. https://doi.org/10.2478/s11756-014-0356-x (2014).

    Article 

    Google Scholar 

  • 52.

    Pincock, D. G. False Detections: What they are and how to remove them from detection data. Vemco Appl. Note 1, 1–11 (2012).

    Google Scholar 

  • 53.

    France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).

    Article 

    Google Scholar 

  • 54.

    Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).

    Article 

    Google Scholar 

  • 55.

    Wissel, B. & Fry, B. Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecologi 144, 659–672. https://doi.org/10.1007/s00442-005-0119-z (2005).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Kline, T. T., Wilson, W. J. & Goering, J. J. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Aquat. Sci. 55, 1494–1502 (1998).

    Article 

    Google Scholar 

  • 57.

    Phillips, D. L. Converting isotope values to diet composition: the use of mixing models. J. Mammal. 93, 342–352 (2012).

    Article 

    Google Scholar 

  • 58.

    Schawarcz, H. P. Some theoretical aspects of isotope paleodiet studies. J. Archaeol. Sci. 18, 261–275 (1991).

    Article 

    Google Scholar 

  • 59.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 60.

    Saucède, T. et al. in The Kerguelen Plateau: Marine Ecosystem and Fisheries. Proceedings of the Second Symposium (eds D. Welsford, J. Dell, & G. Duhamel) 95–116 (Australian Antarctic Division, 2019).

  • 61.

    Batschelet, E. Circular Statistics in Biology. (Academic Press, 1981).

  • 62.

    Zar, J. H. Bisostatistical Analysis. 5th edn, (Prentice-Hall/Pearson, 2010).

  • 63.

    Cherel, Y., Ducatez, S., Fontaine, C., Richard, P. & Guinet, C. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar. Ecol. Prog. Ser. 370, 239–247 (2008).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 65.

    Ciancio, J., Beauchamp, D. A. & Pascuala, M. Marine effect of introduced salmonids: Prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf. Limnol. Oceanogr. 55, 2181–2192 (2010).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Thorstad, E. B. et al. Marine life of the sea trout. Mar. Biol. 163(47), 1–19. https://doi.org/10.1007/s00227-016-2820-3 (2016).

    Article 

    Google Scholar 

  • 67.

    Závorka, L., Koeck, B., Killen, S. S. & Kainz, M. J. Aquatic predators influence flux of essential micronutrients. Trends Ecol. Evol. 34, 880–881 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Colombo, S. M., Wacker, A., Parrish, C. C., Kainz, M. J. & Arts, M. T. A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environ. Rev. 25, 163–174. https://doi.org/10.1139/er-2016-0062 (2017).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Jarry, M. et al. Sea trout (Salmo trutta) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934 (2018).

    Article 

    Google Scholar 

  • 70.

    O’Neal, A. L. & Stanford, J. A. Partial migration in a robust brown trout population of a Patagonian river. Trans. Am. Fish. Soc. 140, 623–635 (2011).

    Article 

    Google Scholar 

  • 71.

    Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Jonsson, B. & Jonsson, N. Partial migration: niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365 (1993).

    Article 

    Google Scholar 

  • 73.

    Newton, C. The Trouts Tale. The Fish that Followed an Empire. 218 (The Medlar Press, 2013).

  • 74.

    Davidsen, J. G. et al. Does reduced feeding prior to release improve the marine migration of hatchery brown trout Salmo trutta L. smolts?. J. Fish Biol. 85, 1992–2002 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Westley, P. A. H. & Fleming, I. A. Landscape factors that shape a slow and persistent aquatic invasion: Brown trout in Newfoundland 1883–2010. Biodivers. Res. 17, 566–579 (2011).

    Google Scholar 

  • 76.

    Larsson, S. Thermal preference of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta: Implications for their niche segregation. Environ. Biol. Fishes 73, 89–96 (2005).

    Article 

    Google Scholar 

  • 77.

    Elliot, J. M. Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshwat. Biol. 44, 237–245 (2000).

    Article 

    Google Scholar 

  • 78.

    Elliot, J. M. & Hurley, M. A. Optimum energy intake and gross efficiency of energy conversion for brown trout, Salmo trutta, feeding on invertebrates or fish. Freshwat. Biol. 44, 605–615 (2000).

    Article 

    Google Scholar 

  • 79.

    Jensen, J. L. A. et al. Water temperatures influence the marine area use of Salvelinus alpinus and Salmo trutta. J. Fish Biol. 84, 1640–1653. https://doi.org/10.1111/jfb.12366 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Rikardsen, A. H. et al. The marine temperature and depth preferences of Arctic charr and sea trout, as recorded by data storage tags. Fish. Oceanogr. 16, 436–447. https://doi.org/10.1111/j.1365-2419.2007.00445.x (2007).

    Article 

    Google Scholar 

  • 81.

    Chernitsky, A. G., Zabruskov, G. V., Ermolaev, V. V. & Shkurko, D. S. Life history of trout, Salmo trutta L., in the Varsina River estuary, (The Barents Sea). Nord. J. Freshw. Res. 71, 183–189 (1995).

    Google Scholar 

  • 82.

    Honkanen, H. M. et al. Summer survival and activity patterns of estuary feeding anadromous Salmo trutta. Ecol. Freshwat. Fish 29, 31–39 (2020).

    Article 

    Google Scholar 

  • 83.

    Thomas, T., Davaine, P. & Beall, E. Dynamique de la migration et reproduction de la truite de mer, Salmo trutta L., dans la Rivière Norvégienne Iles Kerguelen. Com. Natl. Franç. Rech. Antarct. 47, 5–42 (1981).

    Google Scholar 

  • 84.

    Beall, E. & Davaine, P. Analyse scalimetrique de la truite de mer (Salmo trutta L.): formation des anneaux et criteres d’identification chez les individus sedentaires et migrateurs d’une meme population acclimatee aux iles Kerguelen (TAAF). Aquat. Living Resour. 1, 3–16 (1988).

    Article 

    Google Scholar 

  • 85.

    Ciancio, J. E., Pascual, M. A., Botto, F., Frere, E. & Iribarne, O. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol. Oceanogr. 53, 788–798 (2008).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Davidsen, J. G. et al. Trophic niche variation among sea trout Salmo trutta in Central Norway investigated by three different time-integrated trophic tracers. J. Aquat. Biol. 26, 217–227. https://doi.org/10.3354/ab00689 (2017).

    Article 

    Google Scholar 

  • 87.

    Elliott, J. A. Stomach contents of adult sea trout caught in six English rivers. J. Fish Biol. 50, 1129–1132 (1997).

    Google Scholar 

  • 88.

    Knutsen, J. A., Knutsen, H., Gjøsæter, J. & Jonsson, B. Food of anadromous brown trout at sea. J. Fish Biol. 59, 533–543 (2001).

    Article 

    Google Scholar 

  • 89.

    Rikardsen, A. H. et al. Temporal variability in marine feeding of sympatric Arctic charr and sea trout. J. Fish Biol. 70, 837–847 (2007).

    Article 

    Google Scholar 

  • 90.

    Grønvik, S. & Klemetsen, A. Marine food and diet overlap of Co-occuring Arctic charr (Salvelinus alpinus L.), brown trout (Salmo trutta L.) and Atlantic salmon (S. salar L.) off Senja, N. Norway. Polar Biol. 7, 173–177 (1987).

    Article 

    Google Scholar 

  • 91.

    Aulus-Giacosa, L. Spatio-temporal evolution of life history traits related to dispersal. Brown trout (Salmo trutta L.) colonization of the sub-Antarctic Kerguelen Islands PhD thesis, Université de Pau et des Pays de l’Adour (2021).

  • 92.

    Cherel, Y., Fontaine, C., Richard, P., Labat, J. P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332. (2010).


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions