in

Mercury content in the Siberian tiger (Panthera tigris altaica Temminck, 1844) from the coastal and inland areas of the Russia

This is the first study to evaluate the mercury content in the fur of Siberian tigers in the Far East of Russia. It is a commonly recognized fact that fish are the main source of mercury entering the organism of predators and the trophic network of the ecosystem. In some areas, the seasonal abundance of salmonids can provide tigers with protein: masu (Oncorhynchus masou) from April to early July, chum (O. keta) in late autumn and up to December and pink salmon (O. gorbuscha) in July–early October. However, our observations during 1976–2018 (15 (Poddubnaya, unpublished data)) and data on mercury content show that tigers do not eat salmon often. Tigers do not hunt the redfin dace (Tribolodon hakonensis) a cyprinid fish, moving up in huge swarms from April to June.

Although tigers were never observed to consume fish in mass quantities, as is the case with bears, one would expect that the total concentration of mercury (THg) in the body of tigers from two sections of the Sikhote-Alin (basin drainage of the Sea of Japan and the catchment of the Amur River) would vary depending on the availability of anadromous fish. The rivers of the Sea of Japan basin are shorter and shallower than Amur’s tributaries. Therefore, the likelihood of a tiger catching fish here seems to be higher. However, Amur’s tributaries are richer in fish and the probability of catching fish has to be no less than that observed in the coast. Thus, it can be assumed that the proportion of fish in tiger’s diet on the coast and in the inland region should be similar. Apparently, the consumption of salmon by tigers can be neglected in this analysis.

The minor role of fish in the Siberian tiger diet is further evidenced by comparing its average mercury content with other large felids known to consume fish and other aquatic animals. Thus, individuals of Florida panther (Puma concolor coryi), consuming aquatic and fish-eating animals have elevated levels of MMHg—1.62 ± 1.87 mg/kg or 1.84 mg/kg THg 20. The average mercury concentration in the jaguar (Panthera onca), mainly preying on fish and alligators, reaches even higher values of up to 4.27 mg/kg (from 2.13 to 7.26 mg/kg) 21. The average THg content in the Siberian tiger is 0.383 ± 0.062 mg/kg indicating that it eats little fish, if any.

In the south of the Russian Far East, some ungulates caught by the tiger on the eastern macro slope of Sikhote-Alin periodically go to the sea to lick salt and eat algae. This can lead to some increase in the level of mercury in their tissues and in the tiger along the trophic chain. In addition, ungulates, especially deer, can eat various lichens, including Usnea in the temperate forests.

As we found out, THg in lichens from the coast, where sea fog is observed, was 0.170 ± 0.017 mg kg−1 (n = 30), which is 2.6 times higher than the average value for inland areas (0.065 ± 0.004 mg kg−1 (n = 24) (Fig. 1A). The absolute values of THg in Usnea lichens from the coast in the south of the Russian Far East turned out to be higher than in the Ramalina menziesii lichens (from the same order Lecanorales and the same ecological form as Usnea) from the coast in California 3 (0.138 ± 0.012 mg kg−1). It is possible that such differences are related to species-specific features of their thalli. Different species of lichens from the same locality can accumulate different amounts of toxic substances in their thallus. Thus, Usnea contained 0.170 ± 0.017 mg kg−1, and the mesomorphic evernia (Evernia mesomorpha) collected on the same site—0.292 mg kg−1(n = 2).

Figure 1

Map of sampling sites and mean values of (A) THg concentrations in lichen (Usnea sp.) (site names correspond to data in Table 1), (B) THg in tiger fur. The blue triangles and circles represent the samples from coastal sub-region and the black—from inland sub-region. Lichen sampling was done in 2019 and tiger fur sampling was done in 2004–2014. The map was generated in Adobe Photoshop CS6, based on a map from the public domain on the site https://yandex.ru/legal/maps_termsofuse/?lang=en.

Full size image

Weiss-Penzias et al. 3 do not give the average THg for inland lichens, but they show that the high MMHg content in lichens on the coast is obtained through coastal marine atmospheric fog. We compared our data with those for THg on Bathurst Island 22, where the spatial pattern in THg enrichment was very similar to that of MMHg, with enrichment highest at coastal sites and decreasing within 10 km, suggesting similar origins of atmospheric THg and MMHg to lichens. Potential sources of inorganic Hg and MMHg to lichens are diverse (e.g. 3,22). MMHg from THg can range from 4.4 to 23% 3, therefore special future studies are needed to understand the dynamics of Hg species in lichen.

The average individual THg concentrations in tiger fur samples from the coast ranged from 0.115 to 0.918 mg kg−1 (n = 12), on average 0.434 ± 0.067 (Fig. 1B, Table 1), while tiger fur samples from the inland regions (n = 12) had lower concentrations of THg (range from 0.057 to 0.950 mg kg−1, average 0.239 ± 0.075); the differences between the means of the two sites were statistically significant (p = 0.01) (Fig. 1B, Table 1).

Table 1 Statistics on the subsets of THg concentration data used in this paper.
Full size table

The average concentrations of THg in the tiger fur of two subregions were lower (0.434 ± 0.067 and 0.239 ± 0.075 mg kg−1) than similar values for pumas from California 3. In contrast to California, where the average THg content in pumas from the coastal area was three times higher than in animals from the inland areas, in the Russian Far East the average THg content in tiger fur sampled in the area influenced by the sea fog was two times higher than that in comparable samples from inland areas. Although, it is the inland area (the Amur River basin) that is subject to high levels of human activity, including the mining of coal and gold in the past and present, and we could expect higher levels of mercury in living components of ecosystems. The average concentrations of THg in the tiger fur were only from 0.056 to 0.232 mg kg−1 (n = 4) near coal and gold mining sites.

Different age classes were sampled in both the coastal and inland areas, and THg concentrations increased with age (adult > young) in both areas (Table 1). This pattern is typical for predatory animals in general and for pumas, in particular 3, which is natural due to the cumulative effect and increasing mercury content with age 22,23,24,25. Differences in the average individual mercury content in individual fur samples of young and adult tigers were significant (p = 0.04) (Table 1). Moreover, the differences between the average mercury content in young and adult tigers were insignificant in the inland site (p = 0.32), while being significant on the coast (p = 0.04) (Table 1).

We did not observe any significant differences in THg concentrations between the sexes (p = 0.86) (Table 1) and between males from the coast and the inland (p = 0.25) (Table 1) as was noted earlier for puma 3,21. On the contrary, the average values of mercury in the fur of individuals from the coast were 3.1 times higher than from the inland sites within the group of females, this difference was statistically significant (p = 0.03) (Table 1). These data contradict to what was observed in puma by Weiss-Penzias et al. 3. Such feature of female tiger is apparently associated with their shorter migration routes and smaller individual territories compared to males 26,27. Unlike males, which can cross the main Sikhote-Alin ridge, females are usually located either on the territory in the zone of sea fog influence, or in the inland areas.

In addition, young females often remain within the territory of their mothers during dispersal 15. Rather similar information was obtained for the wild European cat 28, where THg in females was about 1.4 times higher than in males, although the differences were not statistically significant. There were no significant differences in THg content between young tigers in coastal and inland areas, as well as in the samples of animals, which died in autumn–winter and spring-early summer (Table 1).

Apparently, preying on land animals does not lead to the accumulation of high Hg levels in felids. The average Hg levels in the fur of a near-water species such as the ocelot (Felis pardalis) mainly preying on terrestrial animals, varied in the same range as the tiger: 0.5–1.25 mg kg−1 29. Tigers are mainly consumers of the second level and therefore the average content of mercury in their body (0.383 ± 0.062) (Table 1) is lower than in the fur of consumers of the third level such as the pine marten 1.80 ± 1.34 mg kg−1 30 or Daubenton’s bat 1.15 ± 0.27 mg kg−1 31.

The only sample with a maximum mercury content of 1.402 mg kg−1 (age and gender unknown) was from the southwestern Primorye, which is located on the coast and where there are cinnabar deposits nearby. This sample was not used in the total analysis. Interestingly, the available sample of a young female Far Eastern leopard fur (Panthera pardus orientalis) from the same site had practically the same mercury content (1.456 mg kg−1). Local increased mercury content in the body of tigers can be associated with deposits of mercury-containing minerals. These data do not confuse our understanding of the sources of mercury in the ecosystem; they serve as a signal for a more profound study of natural processes.

Our data on a higher mercury level (THg) in lichens and tigers of the sea coast compared to inland areas may be related to the effects of coastal sea atmospheric fog, a potential source of monomethylmercury (MMHg) produced in the ocean 3.

The levels of mercury we found in Siberian tigers from the Russian Far East are about four times lower than the mercury content in the fur and vibrissa of puma from California 3. It seems that such differences are related to the position of these regions relative to the zones of deep faults of the mantle formation of the East Pacific platform 32. The maximum concentrations of Hg in the near-surface atmosphere are confined to such zones, and the concentrations decrease at a distance from them. California is located closer to such zones, while the south of the Russian Far East is further away.

And the fact that different levels of mercury in ecosystems depend on the distance relative to the deep faults of the East Pacific platform is confirmed, for example, by pink salmon: fish from the Sea of Japan contain much less mercury than fish from the Kuril region closer to the fault zone (from 0.045 to 0.087 mg kg−1 wet weight 31. At the same time, we must not forget that California is the most populated and one of the most industrially developed states in the USA. However, it seems that natural processes currently play the main role in formation of heavy metal content in the discussed populations. Thus, lead concentrations in organs and tissues (liver, gonads, and muscle) of fish from Kuril oceanic waters was one and a half order of magnitude higher than that of pink salmon from the Sea of Japan 33.

If the global anthropogenic mercury pollution of terrestrial and aquatic ecosystems continues, coastal food webs in the zone of influence of the East Pacific platform will be at most risk of toxicological effects.


Source: Ecology - nature.com

Old-growth forest carbon sinks overestimated

MIT engineers make filters from tree branches to purify drinking water