in

Mobilizing the past to shape a better Anthropocene

  • 1.

    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).

    Article  Google Scholar 

  • 7.

    Braje, T. J. Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J. Archaeol. Res. 23, 369–396 (2015).

    Article  Google Scholar 

  • 8.

    Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the age of humans. Proc. Natl Acad. Sci. USA 117, 8250–8253 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Sabloff, J. A. Archaeology Matters: Action Archaeology in the Modern World (Routledge, 2008).

  • 10.

    Guttmann-Bond, E. Sustainability out of the past: how archaeology can save the planet. World Archaeol. 42, 355–366 (2010).

    Article  Google Scholar 

  • 11.

    Reed, K. & Ryan, P. Lessons from the past and the future of food. World Archaeol. 51, 1–16 (2019).

    Article  Google Scholar 

  • 12.

    Isendahl, C. & Stump, D. (eds) The Oxford Handbook of Historical Ecology and Applied Archaeology (Oxford Univ. Press, 2019).

  • 13.

    Fisher, C. Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393–441 (2019).

    Article  Google Scholar 

  • 14.

    Wolverton, S. & Lyman, R. L. (eds) Conservation Biology and Applied Zooarchaeology (Univ. Arizona Press, 2012).

  • 15.

    Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Article  Google Scholar 

  • 16.

    Raymond, H. The ecologically noble savage debate. Annu. Rev. Anthropol. 36, 177–190 (2007).

    Article  Google Scholar 

  • 17.

    Steffen, W., Grinevald, J., Crutzen, P. J. & McNeill, J. R. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. Lond. A 369, 842–867 (2011).

    Google Scholar 

  • 18.

    Ellis, E., Maslin, M., Boivin, N. & Bauer, A. A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).

    Article  Google Scholar 

  • 19.

    Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).

    Article  Google Scholar 

  • 20.

    Lewis, S. L. & Maslin, M. Defining the Anthropocene. Nature 519, 171–180 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).

    Article  Google Scholar 

  • 26.

    Haines-Young, R. & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  • 27.

    Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).

    Article  Google Scholar 

  • 28.

    Willis, K. J. & Birks, H. J. B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Scharf, E. A. Deep time: the emerging role of archaeology in landscape ecology. Landsc. Ecol. 29, 563–569 (2014).

    Article  Google Scholar 

  • 32.

    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Whitlock, C., Colombaroli, D., Conedera, M. & Tinner, W. Land‐use history as a guide for forest conservation and management. Conserv. Biol. 32, 84–97 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Frazier, J. Sustainable use of wildlife: the view from archaeozoology. Nat. Conserv. 15, 163–173 (2007).

    Article  Google Scholar 

  • 35.

    Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Braje, T. & Rick, T. C. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology. Evol. Anthropol. 22, 303–311 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Barak, R. S. et al. Taking the long view: integrating recorded, archeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 177, 90–102 (2016).

    Article  Google Scholar 

  • 39.

    Lambrides, A. B. & Weisler, M. I. Pacific Islands ichthyoarchaeology: implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 24, 275–324 (2016).

    Article  Google Scholar 

  • 40.

    Foster, T., Olsen, L., Dale, V. & Cohen, A. Studying the past for the future: managing modern biodiversity from historic and prehistoric data. Hum. Organ. 69, 149–157 (2010).

    Article  Google Scholar 

  • 41.

    Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Nogué, S. et al. Island biodiversity conservation needs palaeoecology. Nat. Ecol. Evol. 1, 0181 (2017).

    Article  Google Scholar 

  • 43.

    Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 104, 9709–9714 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Szpak, P., Orchard, T., McKechnie, I. & Gröcke, D. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).

    Article  Google Scholar 

  • 46.

    McCune, J. L., Pellatt, M. G. & Vellend, M. Multidisciplinary synthesis of long-term human–ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166, 293–300 (2013).

    Article  Google Scholar 

  • 47.

    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Corlett, R. T. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol. Conserv. 163, 13–21 (2013).

    Article  Google Scholar 

  • 49.

    Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 26, 65–115 (2018).

    Article  Google Scholar 

  • 50.

    Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Hofman, C. A., Rick, T. C., Fleischer, R. C. & Maldonado, J. E. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends Ecol. Evol. 30, 540–549 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Waters, J. M. & Grosser, S. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38, 1177–1184 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Valentine, K. et al. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conserv. Genet. 9, 933–938 (2008).

    Article  Google Scholar 

  • 54.

    Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California. Proc. Natl Acad. Sci. USA 107, 9246–9251 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 36249 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Brewington, S. et al. Islands of change vs. islands of disaster: managing pigs and birds in the Anthropocene of the North Atlantic. Holocene 25, 1676–1684 (2015).

    Article  Google Scholar 

  • 58.

    Hicks, M. et al. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) Ch. 12 (Oxford Univ. Press, 2019).

  • 59.

    Grayson, D. K. & Delpech, F. Pleistocene reindeer and global warming. Conserv. Biol. 19, 557–562 (2005).

    Google Scholar 

  • 60.

    Enghoff, I. B., MacKenzie, B. R. & Nielson, E. E. The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 BC): forerunner of future changes? Fish. Res. 87, 167–180 (2007).

    Article  Google Scholar 

  • 61.

    Tengberg, A. et al. Cultural ecosystem services provided by landscapes: assessment of heritage values and identity. Ecosyst. Serv. 2, 14–26 (2012).

    Article  Google Scholar 

  • 62.

    Walter, R. K. & Hamilton, R. J. A cultural landscape approach to community-based conservation in Solomon Islands. Ecol. Soc. 19, 41 (2014).

    Article  Google Scholar 

  • 63.

    Ekblom, A., Shoemaker, A., Gillson, L., Lane, P. & Lindholm, K. J. Conservation through biocultural heritage—examples from sub-Saharan Africa. Land 8, 5 (2019).

    Article  Google Scholar 

  • 64.

    Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    CAS  Article  Google Scholar 

  • 66.

    Bowman, D. M. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. Lond. B 371, 20150169 (2016).

    Article  Google Scholar 

  • 67.

    Kelly, L. T. & Brotons, L. Using fire to promote biodiversity. Science 355, 1264–1265 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Gillson, L., Whitlock, C. & Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 24, 14 (2019).

    Article  Google Scholar 

  • 70.

    Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Hlubik, S., Berna, F., Feibel, C., Braun, D. & Harris, J. W. K. Researching the nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthropol. 58, S243–S257 (2017).

    Article  Google Scholar 

  • 72.

    Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).

    Article  Google Scholar 

  • 73.

    Black, B. A., Ruffner, C. M. & Abrams, M. D. Native American influences on the forest composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res. 36, 1266–1275 (2006).

    Article  Google Scholar 

  • 74.

    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).

    CAS  Article  Google Scholar 

  • 75.

    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Env. Res. 38, 57–80 (2013).

    Article  Google Scholar 

  • 76.

    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Front. Ecol. Evol. 6, 111 (2018).

    Article  Google Scholar 

  • 78.

    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Nowacki, G. J. & Abrams, M. D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58, 123–138 (2008).

    Article  Google Scholar 

  • 80.

    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Env. 11, e55–e63 (2013).

    Google Scholar 

  • 81.

    Archibald, S. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. Lond. B 371, 20150346 (2016).

    Article  CAS  Google Scholar 

  • 82.

    Roos, C. I. et al. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philos. Trans. R. Soc. Lond. B 371, 20150469 (2016).

    Article  Google Scholar 

  • 83.

    North, M. P. et al. Reform forest fire management. Science 349, 1280–1281 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 23, 712–722 (2015).

    Article  Google Scholar 

  • 85.

    Edwards, A., Russell-Smith, J. & Meyer, M. Contemporary fire regime risks to key ecological assets and processes in north Australian savannas. Int. J. Wildland Fire 24, 857–870 (2015).

    Article  Google Scholar 

  • 86.

    Bliege Bird, R., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).

    PubMed  Article  Google Scholar 

  • 87.

    Whitehead, P. J., Bowman, D. M., Preece, N., Fraser, F. & Cooke, P. Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management. Int. J. Wildland Fire 12, 415–425 (2003).

    Article  Google Scholar 

  • 88.

    Mitchell, R. J. et al. Future climate and fire interactions in the southeastern region of the United States. For. Ecol. Manag. 327, 316–326 (2014).

    Article  Google Scholar 

  • 89.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107, 19167–19170 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 90.

    Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed savanna burning: emerging contributions of indigenous people in northern Australia. Public Admin. Dev. 28, 374–385 (2008).

    Article  Google Scholar 

  • 91.

    Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. Lond. B 371, 20150174 (2016).

    Article  CAS  Google Scholar 

  • 92.

    Gillson, L. & Willis, K. J. ‘As Earth’s testimonies tell’: wilderness conservation in a changing world. Ecol. Lett. 7, 990–998 (2004).

    Article  Google Scholar 

  • 93.

    Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. BioScience 36, 368–373 (1986).

    Article  Google Scholar 

  • 94.

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 95.

    Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815–822 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 96.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 97.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 98.

    Renard, D. et al. Ecological engineers ahead of their time: the functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today. Ecol. Eng. 45, 30–44 (2012).

    Article  Google Scholar 

  • 99.

    Kunen, J. L. Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. J. Field. Archaeol. 28, 325–346 (2001).

    Article  Google Scholar 

  • 100.

    Erickson, C. L. in Managing Change: Sustainable Approaches to the Conservation of the Built Environment (eds Erickson, C. L. et al.) 181–204 (Getty Conservation Institute, 2003).

  • 101.

    Sandor, J. A. & Eash, N. S. Significance of ancient agricultural soils for long‐term agronomic studies and sustainable agriculture research. Agron. J. 83, 29–37 (1991).

    Article  Google Scholar 

  • 102.

    Marston, J. M. Modeling resilience and sustainability in ancient agricultural systems. J. Ethnobiol. 35, 585–605 (2015).

    Article  Google Scholar 

  • 103.

    Logan, A. L., Stump, D., Goldstein, S. T., Orijemie, E. A. & Schoeman, M. H. Usable pasts forum: critically engaging food security. Afr. Archaeol. Rev. 36, 419–438 (2019).

    Article  Google Scholar 

  • 104.

    Stump, D. “Ancient and backward or long-lived and sustainable?” The role of the past in debates concerning rural livelihoods and resource conservation in eastern Africa. World Dev. 38, 1251–1122 (2010).

    Article  Google Scholar 

  • 105.

    Spriggs, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 395–411 (Oxford Univ. Press, 2019).

  • 106.

    Herath, S., Mishra, B., Wong, P. & Weerakoon, S. B. in Resilient Asia: Fusion of Traditional and Modern Systems for a Sustainable Future (eds Takeuchi, K. et al.) 151–187 (Springer, 2018).

  • 107.

    Lang, C. & Stump, D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quat. Res. 88, 382–399 (2017).

    Article  Google Scholar 

  • 108.

    Abeywardana, N., Schütt, B., Wagalawatta, T. & Bebermeier, W. Indigenous agricultural systems in the Dry Zone of Sri Lanka: management transformation assessment and sustainability. Sustainability 11, 910 (2019).

    Article  Google Scholar 

  • 109.

    Kendall, A. & Drew, D. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 423–440 (Oxford Univ. Press, 2019).

  • 110.

    Erickson, C. L. & Candler, K. L. in Fragile Lands of Latin America: Strategies For Sustainable Development (ed. Browder, J. O.) 230–248 (Westview Press, 1989).

  • 111.

    Erickson, C. L. Raised field agriculture in the Lake Titicaca Basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).

    Google Scholar 

  • 112.

    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Lombardo, U., Canal-Beeby, E., Fehr, S. & Veit, H. Raised fields in the Bolivian Amazonia: a prehistoric green revolution or a flood risk mitigation strategy? J. Archaeol. Sci. 38, 502–512 (2011).

    Article  Google Scholar 

  • 114.

    Kurashima, N., Fortini, L. & Ticktin, T. The potential of indigenous agricultural food production under climate change in Hawaiʻi. Nat. Sustain. 2, 191–199 (2019).

    Article  Google Scholar 

  • 115.

    Marshall, K. et al. Restoring people and productivity to Puanui: challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 22, 23 (2017).

    Article  Google Scholar 

  • 116.

    Lincoln, N. K. et al. Restoration of ‘Āina Malo’o on Hawai’i Island: expanding biocultural relationships. Sustainability 10, 3985 (2018).

    Article  Google Scholar 

  • 117.

    Atlas, W. I. et al. Ancient fish weir technology for modern stewardship: lessons from community-based salmon monitoring. Ecosyst. Health Sustain. 3, 1341284 (2017).

    Article  Google Scholar 

  • 118.

    Rodrigues, L., Lombardo, U., Beeby, E. C. & Veit, H. Linking soil properties and pre-Columbian agricultural strategies in the Bolivian lowlands: the case of raised fields in Exaltación. Quat. Int. 437, 143–155 (2017).

    Article  Google Scholar 

  • 119.

    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Herrera, A. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 459–479 (Oxford Univ. Press, 2019).

  • 121.

    Barthel, S. & Isendahl, C. Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol. Econ. 86, 224–234 (2013).

    Article  Google Scholar 

  • 122.

    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia: combating the erosion of diversity in landscapes of food production. Ecol. Soc. 18, 71 (2013).

    Article  Google Scholar 

  • 123.

    Maezumi, S. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 124.

    Barthel, S., Crumley, C. & Svedin, U. Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Glob. Environ. Change 23, 1142–1152 (2013).

    Article  Google Scholar 

  • 125.

    Poschlod, P. & Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 211, 60–68 (2017).

    Article  Google Scholar 

  • 126.

    Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. The impact of genetic changes during crop domestication. Agronomy 8, 119 (2018).

    Article  Google Scholar 

  • 127.

    Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 128.

    Cheng, A. Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 269, 136–142 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 129.

    Mueller, N. G., Fritz, G. J., Patton, P., Carmody, S. & Horton, E. T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 3, 17092 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 130.

    Logan, A. L. “Why Can’t People Feed Themselves?”: archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118, 508–524 (2016).

    Article  Google Scholar 

  • 131.

    Mueller, N. G., White, A. & Szilagyi, P. Experimental cultivation of eastern North America’s lost crops: insights into agricultural practice and yield potential. J. Ethnobiol. 39, 549–566 (2019).

    Article  Google Scholar 

  • 132.

    Palmer, S. A., Smith, O. & Allaby, R. G. The blossoming of plant archaeogenetics. Ann. Anat. 194, 146–156 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 133.

    Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373–384 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 134.

    McNeill, J. R. & Winiwarter, V. Breaking the sod: humankind, history, and soil. Science 304, 1627–1629 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 135.

    Brown, A. G. & Walsh, K. Societal stability and environmental change: examining the archaeology‐soil erosion paradox. Geoarchaeology 32, 23–35 (2017).

    Article  Google Scholar 

  • 136.

    Sandor, J. A. & Homburg, J. A. Anthropogenic soil change in ancient and traditional agricultural fields in arid to semiarid regions of the Americas. J. Ethnobiol. 37, 196–217 (2017).

    Article  Google Scholar 

  • 137.

    Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 138.

    Lehmann, J., Kern, D. C., Glaser, B. & Woods, W. I. (eds) Amazonian Dark Earths: Origin, Properties, Management (Springer, 2007).

  • 139.

    Blume, H. P. & Leinweber, P. Plaggen soils: landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 16, 319–327 (2004).

    Article  Google Scholar 

  • 140.

    Davidson, D. A., Dercon, G., Stewart, M. & Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 33, 778–783 (2006).

    Article  Google Scholar 

  • 141.

    Sandor, J. A. & Eash, N. S. Ancient agricultural soils in the Andes of southern Peru. Soil Sci. Soc. Am. J. 59, 170–179 (1995).

    CAS  Article  Google Scholar 

  • 142.

    Fairhead, J. & Leach, M. in Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 265–278 (Springer, 2009).

  • 143.

    McFadgen, B. G. Maori plaggen soils in New Zealand, their origin and properties. J. R. Soc. N. Z. 10, 3–18 (1980).

    Article  Google Scholar 

  • 144.

    Calvelo Pereira, R. et al. Detailed carbon chemistry in charcoals from pre‐European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. Eur. J. Soil Sci. 65, 83–95 (2014).

    CAS  Article  Google Scholar 

  • 145.

    Downie, A. E., Van Zwieten, L., Smernik, R. J., Morris, S. & Munroe, P. R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 140, 137–147 (2011).

    Article  Google Scholar 

  • 146.

    Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172, 104–112 (2019).

    CAS  Article  Google Scholar 

  • 147.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 148.

    Bezerra, J., Turnhout, E., Rittl, T. F., Arts, B. & Kuyper, T. W. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ. Policy Plan. 21, 623–635 (2019).

    Article  Google Scholar 

  • 149.

    Novotny, E. H. et al. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009).

    CAS  Article  Google Scholar 

  • 150.

    Lehmann, J. & Joseph, S. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 1–14 (Routledge, 2015).

  • 151.

    Kim, J. S., Sparovek, G., Longo, R. M., De Melo, W. J. & Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 39, 684–690 (2007).

    CAS  Article  Google Scholar 

  • 152.

    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).

    CAS  Article  Google Scholar 

  • 153.

    Jorio, A. et al. Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res. 122, 61–66 (2012).

    Article  Google Scholar 

  • 154.

    More, A. F. et al. Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death. GeoHealth 1, 211–219 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 155.

    Factura, H. et al. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation – integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 61, 2673–2679 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 156.

    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B 362, 187–196 (2007).

    CAS  Article  Google Scholar 

  • 157.

    Fedick, S. L. & Morrison, B. A. Ancient use and manipulation of landscape in the Yalahau region of the northern Maya lowlands. Agric. Hum. Values 21, 207–219 (2004).

    Article  Google Scholar 

  • 158.

    Sedov, S. et al. Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Mem. A 112, 115–126 (2007).

    Google Scholar 

  • 159.

    Acksel, A., Kapenberg, A., Kühn, P. & Leinweber, P. Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Region. 10, 93–101 (2017).

    Article  Google Scholar 

  • 160.

    Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 161.

    Muchiru, A. N., Western, D. & Reid, R. S. The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J. Arid Environ. 73, 322–331 (2009).

    Article  Google Scholar 

  • 162.

    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 163.

    Beach, T., Luzzadder-Beach, S., Dunning, N., Hageman, J. & Lohse, J. Upland agriculture in the Maya Lowlands: ancient Maya soil conservation in northwestern Belize. Geogr. Rev. 92, 372–397 (2002).

    Article  Google Scholar 

  • 164.

    Akimoto, H. Global air quality and pollution. Science 302, 1716–1719 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 165.

    Hong, S., Candelone, J. P., Patterson, C. & Boutron, C. F. History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272, 246–249 (1996).

    CAS  Article  Google Scholar 

  • 166.

    Hong, S., Candelone, J. P., Patterson, C. C. & Boutron, C. F. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 167.

    Shotyk, W. et al. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–1640 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 168.

    Borsos, E., Makra, L., Béczi, R., Vitányi, B. & Szentpéteri, M. Anthropogenic air pollution in the ancient times. Acta Climatol. Chorolog. 36–37, 5–15 (2003).

    Google Scholar 

  • 169.

    Pyatt, F. B. & Grattan, J. P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 23, 235–236 (2001).

    CAS  Article  Google Scholar 

  • 170.

    Pyatt, F. B., Pyatt, A. J., Walker, C., Sheen, T. & Grattan, J. P. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicol. Environ. Saf. 60, 295–300 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 171.

    Longman, J., Veres, D., Finsinger, W. & Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl Acad. Sci. USA 115, E5661–E5668 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 172.

    Renberg, I. et al. Environmental history: a piece in the puzzle for establishing plans for environmental management. J. Environ. Manag. 90, 2794–2800 (2009).

    CAS  Article  Google Scholar 

  • 173.

    Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L. & Davidson, T. A. Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J. Paleolimnol. 45, 533–544 (2011).

    Article  Google Scholar 

  • 174.

    Bindler, R., Rydberg, J. & Renberg, I. Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J. Paleolimnol. 45, 519–531 (2011).

    Article  Google Scholar 

  • 175.

    Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).

    Article  Google Scholar 

  • 176.

    Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).

    Article  Google Scholar 

  • 177.

    Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).

    CAS  Article  Google Scholar 

  • 178.

    Pyatt, F. B. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol. Environ. Saf. 50, 60–64 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 179.

    Pyatt, F. B., Gilmore, G., Grattan, J. P., Hunt, C. O. & McLaren, S. An imperial legacy? An exploration of the environmental impact of ancient metal mining and smelting in southern Jordan. J. Archaeol. Sci. 27, 771–778 (2000).

    Article  Google Scholar 

  • 180.

    Bindler, R., Renberg, I. & Klaminder, J. Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 40, 755–770 (2008).

    Article  Google Scholar 

  • 181.

    Farmer, J. G. et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci. Total Environ. 407, 5578–5588 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 182.

    Knabb, K. A. et al. Environmental impacts of ancient copper mining and metallurgy: multi-proxy investigation of human-landscape dynamics in the Faynan valley, southern Jordan. J. Archaeol. Sci. 74, 85–101 (2016).

    CAS  Article  Google Scholar 

  • 183.

    Grattan, J. P., Gilbertson, D. D. & Hunt, C. O. The local and global dimensions of metalliferous pollution derived from a reconstruction of an eight thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. J. Archaeol. Sci. 34, 83–110 (2007).

    Article  Google Scholar 

  • 184.

    Wilson, B. & Pyatt, F. B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 78, 390–394 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 185.

    Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95 (2009).

    Article  Google Scholar 

  • 186.

    Simon, D. & Adam-Bradford, A. in Balanced Urban Development: Options and Strategies for Liveable Cities (eds Maheshwari, B. et al.) 57–83 (Springer, 2016).

  • 187.

    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).

    Article  Google Scholar 

  • 188.

    Lucero, L. J., Fletcher, R. & Coningham, R. From ‘collapse’ to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 1139–1154 (2015).

    Article  Google Scholar 

  • 189.

    Fletcher, R. in The Comparative Archaeology of Complex Societies (ed. Smith, M. E.) 285–320 (Cambridge Univ. Press, 2011).

  • 190.

    Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 191.

    Barthel, S. et al. Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the Earth System. Anthropocene Rev. 6, 71–97 (2019).

    Article  Google Scholar 

  • 192.

    Wilkinson, A. The Garden in Ancient Egypt (Rubicon Press, 1998).

  • 193.

    Edmondson, J. L. et al. The hidden potental of urban horticulture. Nat. Food 1, 155–159 (2020).

    Article  Google Scholar 

  • 194.

    Scarborough, V. L. et al. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl Acad. Sci. USA 109, 12408–12413 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 195.

    Angelakis, A. N. & Spyridakis, S. V. Major urban water and wastewater systems in Minoan Crete, Greece. Water Sci. Technol. Water Supply 13, 564–573 (2013).

    Article  Google Scholar 

  • 196.

    Mays, L., Antoniou, G. P. & Angelakis, A. N. History of water cisterns: legacies and lesson. Water 5, 1916–1940 (2013).

    Article  Google Scholar 

  • 197.

    French, K. D. & Duffy, C. J. Understanding ancient Maya water resources and the implications for a more sustainable future. Wiley Interdiscip. Rev. Water 1, 305–313 (2014).

    Article  Google Scholar 

  • 198.

    Chase, A. S. Beyond elite control: residential reservoirs at Caracol, Belize. Wiley Interdiscip. Rev. Water 3, 885–897 (2016).

    Article  Google Scholar 

  • 199.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 200.

    Van de Noort, R. Conceptualising climate change archaeology. Antiquity 85, 1039–1048 (2011).

    Article  Google Scholar 

  • 201.

    Hudson, M. J., Aoyama, M., Hoover, K. C. & Uchiyama, J. Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313–328 (2012).

    Article  Google Scholar 

  • 202.

    Sandweiss, D. H. & Kelley, A. R. Archaeological contributions to climate change research: the archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371–391 (2012).

    Article  Google Scholar 

  • 203.

    Rockman, M. & Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl Acad. Sci. USA 117, 8295–8302 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 204.

    Douglass, K. & Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Natl Acad. Sci. USA 117, 8254–8262 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 205.

    Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 206.

    Mitchell, P. Practising archaeology at a time of climatic catastrophe. Antiquity 82, 1093–1103 (2008).

    Article  Google Scholar 

  • 207.

    Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 208.

    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 209.

    Weninger, B. et al. The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Doc. Praehistorica 36, 7–59 (2009).

    Article  Google Scholar 

  • 210.

    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 211.

    Anderson, D. G., Maasch, K. A., Sandweiss, D. H. & Mayewski, P. A. in Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions (eds Anderson, D. G. et al.) 1–23 (Academic Press, 2007).

  • 212.

    Kintigh, K. W. & Ingram, S. E. Was the drought really responsible? Assessing statistical relationships between climate extremes and cultural transitions. J. Archaeol. Sci. 89, 25–31 (2018).

    Article  Google Scholar 

  • 213.

    Amand, F. S. et al. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl Acad. Sci. USA 117, 8287–8294 (2020).

    Article  CAS  Google Scholar 

  • 214.

    Jones, T. L. et al. Environmental imperatives reconsidered: demographic crises in western North America during the Medieval climatic anomaly. Curr. Anthropol. 40, 137–170 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 215.

    Mann, M. E. in Encyclopedia of Global Environmental Change (ed. MacCracken, M. C.) 504–509 (John Wiley & Sons, Ltd, 2002).

  • 216.

    Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. Evidence of resilience to past climate change in Southwest Asia: early farming communities and the 9.2 and 8.2 ka events. Quat. Sci. Rev. 136, 23–39 (2016).

    Article  Google Scholar 

  • 217.

    Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci. USA 107, 6748–6752 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 218.

    Roscoe, P. A changing climate for anthropological and archaeological research? Improving the climate‐change models. Am. Anthropol. 116, 535–548 (2014).

    Google Scholar 

  • 219.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 220.

    Petraglia, M. D., Groucutt, H., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl Acad. Sci. USA 117, 8263–8270 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 221.

    Manuel, M., Lightfoot, D. & Fattahi, M. The sustainability of ancient water control techniques in Iran: an overview. Water Hist. 10, 13–30 (2018).

    Article  Google Scholar 

  • 222.

    Avriel-Avni, N., Avni, Y., Babad, A. & Meroz, A. Wisdom dwells in places: what can modern farmers learn from ancient agricultural systems in the desert of the Southern Levant? J. Arid Environ. 163, 86–98 (2019).

    Article  Google Scholar 

  • 223.

    Lasaponara, R., Rojas, J. L. & Masini, N. in The Ancient Nasca World (eds Lasaponara, R. et al.) 279–327 (Springer, 2016).

  • 224.

    Bebermeier, W., Meister, J., Withanachchi, C. R., Middelhaufe, I. & Schütt, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 9, 231 (2017).

    Article  Google Scholar 

  • 225.

    Altschul, J. H. et al. Opinion: Fostering synthesis in archaeology to advance science and benefit society. Proc. Natl Acad. Sci. USA 114, 10999–11002 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 226.

    Tainter, J. The Collapse of Complex Societies (Cambridge Univ. Press, 1988).

  • 227.

    Redman, C. L. Human Impact on Ancient Environments (Univ. Arizona, 1999).

  • 228.

    Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).

    Article  Google Scholar 

  • 229.

    Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 230.

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    Article  Google Scholar 

  • 231.

    Lane, P. Archaeology in the age of the Anthropocene: a critical assessment of its scope and societal contributions. J. Field Archaeol. 40, 485–498 (2015).

    Article  Google Scholar 

  • 232.

    Catlin, K. A. Archaeology for the Anthropocene: scale, soil, and the settlement of Iceland. Anthropocene 15, 13–21 (2016).

    Article  Google Scholar 

  • 233.

    Kintigh, K. W. et al. Grand challenges for archaeology. Proc. Natl Acad. Sci. USA 111, 879–880 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 234.

    Smith, M. E. Sprawl, squatters and sustainable cities: can archaeological data shed light on modern urban issues? Camb. Archaeol. J. 20, 229–253 (2010).

    Article  Google Scholar 

  • 235.

    Dave, R. Archaeology must open up to become more diverse. The Guardian (23 May 2016); https://go.nature.com/36mbRRl

  • 236.

    White, W. & Draycott, C. Why the whiteness of archaeology is a problem. Sapiens (7 July 2020); https://go.nature.com/3lhgS3T

  • 237.

    Smith, C. & Wobst, H. M. Indigenous Archaeologies: Decolonising Theory and Practice (Routledge, 2004).

  • 238.

    Hamilakis, Y. Decolonial archaeology as social justice. Antiquity 92, 518–520 (2018).

    Article  Google Scholar 

  • 239.

    Mustaphi, C. J. C. et al. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228 (2019).

    Article  Google Scholar 

  • 240.

    Widgren, M. in Rethinking Environmental History World-System History and Global Environmental Change (eds Hornberg, A. et al.) 61–77 (Rowman Altamira, 2007).

  • 241.

    Matthews, D. German humanities scholars’ unusual role. Inside Higher Ed (24 April 2020); https://go.nature.com/3nbVCNi

  • 242.

    Agnoletti, M. (ed.) The Conservation of Cultural Landscapes (CABI, 2006).

  • 243.

    Lowenthal, D. The Past is a Foreign Country – Revisited (Cambridge Univ. Press, 2015).


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web