Tsukamoto, K., Nakai, I. & Tesch, W.-V. Do all freshwater eels migrate?. Nature 396, 635–636 (1998).
Google Scholar
Fromentin, J.-M. & Powers, J. E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6, 281–306 (2005).
Google Scholar
Kerr, L. A. & Secor, D. H. Bioenergetic trajectories underlying partial migration in Patuxent River (Chesapeake Bay) white perch (Morone americana). Can. J. Fish. Aquat. Sci. 66, 602–612 (2009).
Google Scholar
Cadrin, S. X. et al. Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630 (2010).
Google Scholar
Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).
Google Scholar
Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity-stability relationships: statistical inevitability or ecological consequence?. Am. Nat. 151, 277–282 (1998).
Google Scholar
Secor, D. H., Kerr, L. A. & Cadrin, S. X. Connectivity effects on productivity, stability, and persistence in a herring metapopulation model. ICES J. Mar. Sci. 66, 1726–1732 (2009).
Google Scholar
Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future. In The Future of Fisheries Science in North America (eds Beamish, R. J. & Rothschild, B. J.) 405–426 (Springer, 2009).
Secor, D. H. The unit stock concept: bounded fish and fisheries. In Stock Identification Methods: Applications in Fishery Science 2nd edn (eds Cadrin, S. X. et al.) 7–28 (Elsevier, 2014).
Ricker, W. E. Maximum sustained yields from fluctuating environments and mixed stocks. J. Fish. Res. Board Can. 15, 991–1006 (1958).
Google Scholar
Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).
Google Scholar
Kerr, L. A., Cadrin, S. X. & Kovach, A. I. Consequences of a mismatch between biological and management units on our perception of Atlantic cod off New England. ICES J. Mar. Sci. 71, 1366–1381 (2014).
Google Scholar
Goethel, D. R. & Berger, A. M. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74, 1878–1894 (2017).
Google Scholar
Van Beveren, E., Duplisea, D. E., Brosset, P. & Castonguay, M. Assessment modelling approaches for stocks with spawning components, seasonal and spatial dynamics, and limited resources for data collection. PLoS ONE 14, e0222472 (2019).
Google Scholar
Cadrin, S. X. Defining spatial structure for fishery stock assessment. Fish. Res. 221, 105397 (2020).
Google Scholar
Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part II:migration and habits. Fish. Bull. 51, 251–358 (1950).
Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).
Google Scholar
Redding, S. G., Cooper, L. W., Castonguay, M., Wiernicki, C. & Secor, D. H. Northwest Atlantic mackerel population structure evaluated using otolith δ18O composition. ICES J. Mar. Sci. 77, 2582–2589 (2020).
Google Scholar
Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159 (2000).
Google Scholar
Tyrrell, M. C., Link, J. S., Moustahfid, H. & Overholtz, W. J. Evaluating the effect of predation mortality on forage species population dynamics in the Northeast US continental shelf ecosystem using multispecies virtual population analysis. ICES J. Mar. Sci. 65, 1689–1700 (2008).
Google Scholar
Jansen, T. & Gislason, H. Population structure of Atlantic mackerel (Scomber scombrus). PLoS ONE 8, e64744 (2013).
Google Scholar
Nøttestad, L. et al. Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES J. Mar. Sci. 73, 359–373 (2016).
Google Scholar
Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep-Sea. Res. Part II 159, 152–168 (2019).
Google Scholar
FAO. The state of world fisheries and aquaculture 2020. Sustainability in action. 244 http://www.fao.org/documents/card/en/c/ca9229en (2020). Accessed on 23 July 2020.
NEFSC. 64th Northeast Regional Stock Assessment Workshop (64th SAW) Assessment Report. 536 (2018).
DFO. Assessment of the Atlantic mackerel stock for the Northwest Atlantic (Subareas 3 and 4) in 2018. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/035: 14 (2019).
Secor, D. H. Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fish. Res. 43, 13–34 (1999).
Google Scholar
Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part I: early life history, including the growth, drift, and mortality of the egg and larval populations. Fish. Bull. 50, 149–237 (1943).
Berrien, P. L. Eggs and larvae of Scomber scombrus and Scomber japonicus in continental shelf waters between Massachusetts and Florida. Fish. Bull. 76, 95–115 (1978).
Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).
Google Scholar
McManus, M. C., Hare, J. A., Richardson, D. E. & Collie, J. S. Tracking shifts in Atlantic mackerel (Scomber scombrus) larval habitat suitability on the Northeast U.S. Continental Shelf. Fish. Oceanogr. 27, 49–62 (2018).
Google Scholar
Richardson, D. E., Carter, L., Curti, K. L., Marancik, K. E. & Castonguay, M. Changes in the spawning distribution and biomass of Atlantic mackerel (Scomber scombrus) in the western Atlantic Ocean over 4 decades. Fish. Bull. 118, 120–134 (2020).
Google Scholar
Moura, A. et al. Population structure and dynamics of the Atlantic mackerel (Scomber scombrus) in the North Atlantic inferred from otolith chemical and shape signatures. Fish. Res. 230, 105621 (2020).
Google Scholar
Rooker, J. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239 (2008).
Google Scholar
Clarke, L. M., Munch, S. B., Thorrold, S. R. & Conover, D. O. High connectivity among locally adapted populations of a marine fish (Menidia menidia). Ecology 91, 3526–3537 (2010).
Google Scholar
Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES J. Mar. Sci. 72, 2118–2127 (2015).
Google Scholar
Moreira, C. et al. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fish. Res. 197, 113–122 (2018).
Google Scholar
Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).
Google Scholar
McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).
Google Scholar
Kalish, J. M. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203 (1991).
Google Scholar
Solomon, C. T. et al. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci. 63, 79–89 (2006).
Google Scholar
Tohse, H. & Mugiya, Y. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquat. Biol. 1, 259–268 (2008).
Google Scholar
Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).
Google Scholar
Rooker, J. R. & Secor, D. H. Microchemistry: migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tunas: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) (Johns Hopkins University Press, 2019).
Uriarte, A. et al. Spatial pattern of migration and recruitment of North East Atlantic mackerel. ICES CM 2001/O:17 (2001).
Mendiola, D., Alvarez, P., Cotano, U. & Martínez de Murguía, A. Early development and growth of the laboratory reared north-east Atlantic mackerel (Scomber scombrus) L. J. Fish. Biol. 70, 911–933 (2007).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
Google Scholar
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (2020).
Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the U.S. rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461 (2020).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Smith, A. D. et al. Atlantic mackerel (Scomber scombrus L.) in NAFO Subareas 3 and 4 in 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/013. iv + 37 p. (2020).
Lambrey de Souza, J., Sévigny, J.-M., Chanut, J.-P., Barry, W. F. & Grégoire, F. High genetic variability in the mtDNA control region of a Northwestern Atlantic teleost, Scomber scombrus L. Can. Tech. Rep. Fish. Aquat. Sci. 2625, vi+25 (2006).
Radlinski, M. K., Sundermeyer, M. A., Bisagni, J. J. & Cadrin, S. X. Spatial and temporal distribution of Atlantic mackerel (Scomber scombrus) along the northeast coast of the United States, 1985–1999. ICES J. Mar. Sci. 70, 1151–1161 (2013).
Google Scholar
Castonguay, M., Plourde, S., Robert, D., Runge, J. A. & Fortier, L. Copepod production drives recruitment in a marine fish. Can. J. Fish. Aquat. Sci. 65, 1528–1531 (2008).
Google Scholar
McManus, M. C. Atlantic Mackerel (Scomber scombrus) Population and Habitat Trends in the Northwest Atlantic (University of Rhode Island, 2017).
Schloesser, R. W., Rooker, J. R., Louchuoarn, P., Neilson, J. D. & Secord, D. H. Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnol. Oceanogr. 54, 1665–1668 (2009).
Google Scholar
Schloesser, R. W., Neilson, J. D., Secor, D. H. & Rooker, J. R. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ13C and δ18O. Can. J. Fish. Aquat. Sci. 67, 563–569 (2010).
Google Scholar
Thorrold, S. R., Campana, S. E., Jones, C. M. & Swart, P. K. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 61, 2909–2919 (1997).
Google Scholar
Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).
Google Scholar
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Google Scholar
Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).
Google Scholar
Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).
Google Scholar
Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf. Res. 156, 11–22 (2018).
Google Scholar
Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).
Google Scholar
Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).
Google Scholar
Høie, H., Andersson, C., Folkvord, A. & Karlsen, Ø. Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar. Biol. 144, 1039–1049 (2004).
Google Scholar
Martino, J. C., Doubleday, Z. A., Chung, M.-T. & Gillanders, B. M. Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. J. Exp. Biol. 223, jeb217091 (2020).
Google Scholar
Manel, S., Gaggiotti, O. E. & Waples, R. S. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol. Evol. 20, 136–142 (2005).
Google Scholar
Siskey, M. R., Wilberg, M. J., Allman, R. J., Barnett, B. K. & Secor, D. H. Forty years of fishing: changes in age structure and stock mixing in northwestern Atlantic bluefin tuna (Thunnus thynnus) associated with size-selective and long-term exploitation. ICES J. Mar. Sci. 73, 2518–2528 (2016).
Google Scholar
Kerr, L. A., Cadrin, S. X. & Secor, D. H. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507 (2010).
Google Scholar
Goethel, D. R., Quinn, T. J. & Cadrin, S. X. Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19, 119–136 (2011).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Source: Ecology - nature.com