Gartner, T., Mulligan, J., Schmidt, R. & Gunn, J. Natural Infrastructure (World Resources Institute, 2013).
McDonald, R. I. et al. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob. Environ. Change 27, 96–105 (2014).
Google Scholar
Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
Google Scholar
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).
Google Scholar
Palmer, M. A. Water resources: beyond infrastructure. Nature 467, 534–535 (2010).
Google Scholar
Michalak, A. M. Study role of climate change in extreme threats to water quality. Nature 535, 349–350 (2016).
Google Scholar
McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).
Google Scholar
Romulo, C. L. et al. Global state and potential scope of investments in watershed services for large cities. Nat. Commun. 9, 4375 (2018).
Google Scholar
Tellman, B. et al. Opportunities for natural infrastructure to improve urban water security in Latin America. PLoS ONE 13, e0209470 (2018).
Google Scholar
United Nations World Water Assessment Programme/UN-Water The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, 2018).
Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M. & D’Odorico, P. Manage water in a green way. Science 349, 584–585 (2015).
Google Scholar
Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).
Google Scholar
Harrison, I. J. et al. Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 103–120 (2016).
Google Scholar
The World Database on Protected Areas (IUCN and UNEP-WCMC, 2017); http://www.protectedplanet.net
Huber-Stearns, H. R., Goldstein, J. H., Cheng, A. S. & Toombs, T. P. Institutional analysis of payments for watershed services in the western United States. Ecosyst. Serv. 16, 83–93 (2015).
Google Scholar
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
Google Scholar
Zheng, H. et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl Acad. Sci. USA 110, 16681–16686 (2013).
Google Scholar
Adamowicz, W. et al. Assessing ecological infrastructure investments. Proc. Natl Acad. Sci. USA 116, 201802883 (2019).
Google Scholar
McDonald R. I. Conservation for Cities: How to Plan & Build Natural Infrastructure (Island Press, 2015).
Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).
Google Scholar
Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).
Google Scholar
Liu, J. & Yang, W. Integrated assessments of payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 110, 16297–16298 (2013).
Google Scholar
Muller, M., Biswas, A., Martin-Hurtado, R. & Tortajada, C. Built infrastructure is essential. Science 349, 585–586 (2015).
Google Scholar
Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).
Google Scholar
Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).
Google Scholar
Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016).
Google Scholar
Byers L. et al. A Global Database of Power Plants (World Resources Institute, 2018); https://www.wri.org/publication/global-power-plant-database
Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).
Google Scholar
Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).
Google Scholar
Wu, X.-X., Gu, Z.-J., Luo, H., Shi, X.-Z. & Yu, D.-S. Analyzing forest effects on runoff and sediment production using leaf area index. J. Mt. Sci. 11, 119–130 (2014).
Google Scholar
Wang, Y. et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4, 277–287 (2011).
Google Scholar
Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861 (2008).
Google Scholar
Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).
Google Scholar
Maltby, E. & Acreman, M. C. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol. Sci. J. 56, 1341–1359 (2011).
Google Scholar
Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: a review. Urban Water J. 2, 263–275 (2005).
Google Scholar
Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).
Google Scholar
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Google Scholar
Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).
Google Scholar
Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
Google Scholar
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
Google Scholar
Liu, J. et al. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 43, 1–34 (2018).
Google Scholar
Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).
Google Scholar
Vörösmarty, C. J. et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 18, 317–333 (2018).
Google Scholar
Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).
Google Scholar
Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).
Google Scholar
McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl Acad. Sci. USA 108, 6312–6317 (2011).
Google Scholar
Willner, S. N., Otto, C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).
Google Scholar
Cattaneo, A., Nelson, A. & McMenomy, T. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USA 118, e2011990118 (2021).
Google Scholar
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
Google Scholar
Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).
Google Scholar
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).
Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).
Google Scholar
Smith, A. et al. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10, 1814 (2019).
Google Scholar
Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
Google Scholar
Hanasaki, N. et al. An integrated model for the assessment of global water resources—Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).
Google Scholar
Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
Google Scholar
Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).
Google Scholar
Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).
Google Scholar
Müller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).
Google Scholar
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
Google Scholar
Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).
Google Scholar
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).
Google Scholar
Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).
Google Scholar
ArcGIS Desktop: Release 10.3.1 (Environmental Systems Research Institution, 2015).
Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).
Google Scholar
Bennett, G. & Ruef, F. Alliances for Green Infrastructure: State of Watershed Investment 2016 (Forest Trends, 2016).
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Wellman, B. & Frank, K. in Social Capital: Theory and Research (eds Lin, N. et al.) 233–273 (Routledge, 2001).
Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Source: Ecology - nature.com