Pafilis, P. et al. Reproductive biology of insular reptiles: marine subsidies modulate expression of the ‘island syndrome’. Copeia 2011, 545–552 (2011).
Google Scholar
Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).
Google Scholar
Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).
Google Scholar
Gust, N. Variation in the population biology of protogynous coral reef fishes over tens of kilometres. Can. J. Fish. Aquat. Sci. 61, 205–218 (2004).
Google Scholar
Clifton, K. Asynchronous food availability on neighboring Caribbean coral reefs determines seasonal patterns of growth and reproduction for the herbivorous parrotfish Scarus iserti. Mar. Ecol. Prog. Ser. 116, 39–46 (1995).
Google Scholar
Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci. Rep. 6, 34077 (2016).
Google Scholar
Pérez-Ruzafa, A., Pérez-Marcos, M. & Marcos, C. From fish physiology to ecosystems management: keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecol. Ind. 90, 334–345 (2018).
Google Scholar
Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
Google Scholar
Leslie, H. M., Breck, E. N., Chan, F., Lubchenco, J. & Menge, B. A. Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Natl. Acad. Sci. 102, 10534–10539 (2005).
Google Scholar
Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).
Google Scholar
Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 87–98 (2003).
Google Scholar
Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).
Google Scholar
Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2001).
Google Scholar
Stearns, S. C. The Evolution of Life Histories (OUP Oxford, 1992).
Otero, X. L., Peña-Lastra, S. D. L., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).
Google Scholar
Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).
Google Scholar
Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
Google Scholar
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).
Google Scholar
Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327 (2020).
Google Scholar
Bonaldo, R., Hoey, A. & Bellwood, D. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).
Google Scholar
Hoey, A. S. Feeding in parrotfishes: the influence of species, body size, and temperature. In Biology of Parrotfishes (ed Hoey, A. S. & Bonaldo, R. M) 119–133 (CRC Press, 2018).
Google Scholar
Lange, I. D. et al. Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics. Diversity 12, 379 (2020).
Google Scholar
Lokrantz, J., Nyström, M., Thyresson, M. & Johansson, C. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27, 967–974 (2008).
Google Scholar
Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).
Google Scholar
Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).
Google Scholar
Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? Bioscience 63, 397–402 (2013).
Google Scholar
Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159 (2020).
Google Scholar
Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. Mar. Freshwat. Ecosyst. 22, 232–261 (2012).
Google Scholar
Carr, P. et al. Status and phenology of breeding seabirds and a review of Important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31, 14–34 (2021).
Google Scholar
Hilton, G. M. & Cuthbert, R. J. The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152, 443–458 (2010).
Google Scholar
Stoddart, D. R. Rainfall on Indian Ocean coral islands. Atoll Res. Bull. 147, 1–21 (1971).
Google Scholar
Perry, C. T., Kench, P. S., O’Leary, M. J., Morgan, K. M. & Januchowski-Hartley, F. Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43, 503–506 (2015).
Google Scholar
Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976–1976 (2017).
Google Scholar
Taylor, B. M., Trip, E. D. L. & Choat, J. H. Dynamic demography: investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes (eds Hoey, A. S. & Bonaldo, R. M.) 69–98 (CRC Press, 2018).
Google Scholar
Colin, P. L. & Bell, L. J. Aspects of the spawning of labrid and scarid fishes (Pisces: Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families. Environ. Biol. Fishes 31, 229–260 (1991).
Google Scholar
Bay, L. K., Choat, J. H., van Herwerden, L. & Robertson, D. R. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Mar. Biol. 144, 757–767 (2004).
Google Scholar
Meyer, C. G., Papastamatiou, Y. P. & Clark, T. B. Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar. Biol 157, 1499–1511 (2010).
Google Scholar
Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3, 52–70 (2011).
Google Scholar
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).
Google Scholar
Froese, R. & Pauly, D. FishBase (World Wide Web Electronic Publication, 2018).
Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).
Google Scholar
Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).
Google Scholar
Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).
Google Scholar
McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).
Google Scholar
Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).
Google Scholar
Kurita, Y., Meier, S. & Kjesbu, O. S. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203–219 (2003).
Google Scholar
Hoey, J., McCormick, M. I. & Hoey, A. S. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish. Coral Reefs 26, 603–613 (2007).
Google Scholar
Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2015).
Google Scholar
Francis, R. I. C. C. Are growth parameters estimated from tagging and age-length data comparable?. Can. J. Fish. Aquat. Sci. 45, 936–942 (1988).
Google Scholar
Choat, J. H. & Robertson, D. R. Age-based studies. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed Sale, P. F.) 57–80 (Academic Press, 2002).
Google Scholar
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2020).
Google Scholar
Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).
Google Scholar
Hoenig, J. M. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82, 898–903 (1983).
Taylor, B. M. et al. Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes. Ecology 99, 642–651 (2018).
Google Scholar
Taylor, B. M. Drivers of protogynous sex change differ across spatial scales. Proc. Roy. Soc. B: Biol. Sci. 281, 20132423 (2014).
Google Scholar
Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6, e21062 (2011).
Google Scholar
Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).
Google Scholar
Friedlander, A. & DeMartini, E. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).
Google Scholar
Richardson, K. M., Iverson, J. B. & Kurle, C. M. Marine subsidies likely cause gigantism of iguanas in the Bahamas. Oecologia 189, 1005–1015 (2019).
Google Scholar
Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).
Google Scholar
Briggs, A. A. et al. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE 7, e41364 (2012).
Google Scholar
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
Kolb, G., Ekholm, J. & Hambäck, P. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).
Google Scholar
Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 3721 (2017).
Google Scholar
Plass-Johnson, J. G., McQuaid, C. D. & Hill, J. M. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes. Coral Reefs 32, 429–440 (2013).
Google Scholar
Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69, 340–349 (1988).
Google Scholar
Erler, D. V. et al. Has nitrogen supply to coral reefs in the south Pacific Ocean changed over the past 50 thousand years?. Paleoceanogr. Paleoclimatol. 34, 567–579 (2019).
Google Scholar
Benstead, J. P. et al. Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95, 2768–2777 (2014).
Google Scholar
McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).
Google Scholar
Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).
Walsh, S. M., Hamilton, S. L., Ruttenberg, B. I., Donovan, M. K. & Sandin, S. A. Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J. Fish Biol. 80, 519–537 (2012).
Google Scholar
DeMartini, E., Friedlander, A. & Holzwarth, S. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297, 259–271 (2005).
Google Scholar
Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).
Google Scholar
Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).
Google Scholar
Hixon, M. A., Johnson, D. W. & Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71, 2171–2185 (2014).
Google Scholar
Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).
Google Scholar
Buckner, E. V., Hernández, D. L. & Samhouri, J. F. Conserving connectivity: Human influence on subsidy transfer and relevant restoration efforts. Ambio 47, 493–503 (2018).
Google Scholar
Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).
Google Scholar
Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P., Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.104 (2021).
Google Scholar
Source: Ecology - nature.com