in

Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest

  • 1.

    Ni, X. & Groffman, P. M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 115, 8587–8590 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    IPCC. Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

  • 3.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 116, 2805–2813 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Tate, K. R. Soil methane oxidation and land-use change–from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Thauer, R. K., Anne-Kristin, K., Henning, S., Wolfgang, B. & Reiner, H. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?. Glob. Change Biol. 18, 3259–3267 (2012).

    ADS  Article  Google Scholar 

  • 8.

    Murase, J. & Kimura, M. Methane production and its fate in paddy fields. IV. Sources of microorganisms and substrates responsible for anaerobic CH4 oxidation in subsoil. Soil Sci. Plant Nutr. 40, 57–61 (1994).

    CAS  Article  Google Scholar 

  • 9.

    Zhang, M., Huang, J., Sun, S., Rehman, M. & He, S. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water. Sci. Total Environ. 716, 107354 (2020).

    Google Scholar 

  • 10.

    Yu, X. et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol. Biochem. 144, 107775 (2020).

    CAS  Article  Google Scholar 

  • 11.

    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 25, 321–326 (1993).

    CAS  Article  Google Scholar 

  • 14.

    Mer, J. L. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).

    Article  Google Scholar 

  • 15.

    Aronson, E. L., Dubinsky, E. A. & Helliker, B. R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil. Soil Biol. Biochem. 62, 119–128 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Fowler, D., Coyle, M., Skiba, U., Sutton, M. A. & Voss, M. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B. 368, 20130164 (2013).

    Article  CAS  Google Scholar 

  • 20.

    Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).

    ADS  Article  Google Scholar 

  • 24.

    Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341, 314–316 (1989).

    ADS  Article  Google Scholar 

  • 25.

    Hütsch, B. W., Webster, C. P. & Powlson, D. S. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem. 26, 1613–1622 (1994).

    Article  Google Scholar 

  • 26.

    Bodelier, P. L. E., Roslev, P., Henckel, T. & Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–424 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Kruger, M. & Frenzel, P. Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob. Change Biol. 9, 773–784 (2003).

    ADS  Article  Google Scholar 

  • 28.

    Delgado, J. A. & Mosier, A. R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J. Environ. Qual. 25, 1105–1111 (1996).

    CAS  Article  Google Scholar 

  • 29.

    Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 17, 2196–2210 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Cai, Z. et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196, 7–14 (1997).

    CAS  Article  Google Scholar 

  • 31.

    Malghani, S., Reim, A., Fischer, J. V., Conrad, R. & Trumbore, S. E. Soil methanotroph abundance and community composition are not influenced by substrate availability in laboratory incubations. Soil Biol. Biochem. 101, 184–194 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Schnyder, E., Bodelier, P. L. E., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).

    PubMed  Article  Google Scholar 

  • 33.

    Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Shrestha, M., Shrestha, P. M., Frenzel, P. & Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J. 4, 1545–1556 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Liu, H. et al. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Environ. Sci. Pollut. Res. 24, 8731–8743 (2017).

    CAS  Article  Google Scholar 

  • 36.

    Bao, Q., Ding, L. J., Huang, Y. & Xiao, K. Effect of rice straw and/or nitrogen fertiliser inputs on methanogenic archaeal and denitrifying communities in a typical rice paddy soil. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 375–386 (2019).

    CAS  Google Scholar 

  • 37.

    Ho, A. et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8, 1945–1948 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Dan, H. et al. The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiol. Ecol. 7, fiz077 (2019).

    Google Scholar 

  • 39.

    Zhang, D., Mo, L., Chen, X., Zhang, L. & Xu, X. Effect of nitrogen addition on methanotrophs in temperate forest soil. Acta Ecol. Sin. 37, 8254–8263 (2017).

    Google Scholar 

  • 40.

    Mohanty, S. R., Bodelier, P. L. E., Floris, V. & Conrad, R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346–1354 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Hu, A. & Lu, Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol. Biochem. 85, 31–38 (2015).

    CAS  Article  Google Scholar 

  • 42.

    Shrestha, P. M. et al. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Jang, I., Lee, S., Zoh, K. D. & Kang, H. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43, 620–627 (2011).

    CAS  Article  Google Scholar 

  • 44.

    Song, X., Chen, X., Zhou, G., Jiang, H. & Peng, C. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agric. For. Meteorol. 247, 467–475 (2017).

    ADS  Article  Google Scholar 

  • 45.

    Song, X. et al. Carbon sequestration by Chinese bamboo forests, and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).

    CAS  Article  Google Scholar 

  • 46.

    Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Song, X., Zhou, G., Gu, H. & Qi, L. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant Soil 395, 391–400 (2015).

    CAS  Article  Google Scholar 

  • 48.

    Mo, J., Fang, Y., Xu, G., Li, D. & Xue, J. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecol. Sin. 25, 682–690 (2005).

    CAS  Google Scholar 

  • 49.

    Zhang, W. et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China. J. Geophys. Res. 113, D11116 (2008).

    ADS  Article  CAS  Google Scholar 

  • 50.

    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Wang, M., Xu, X., Wang, W., Wang, G. & Su, C. Effects of slag and biochar amendments on methanogenic community structures in paddy fields. Acta Ecol. Sin. 38, 2816–2818 (2018).

    Article  Google Scholar 

  • 53.

    Zeikus, J. G. Biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541 (1977).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. 27, 929–940 (2021).

  • 55.

    Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20(3), 1016–1029 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 487 (2015).

    Article  Google Scholar 

  • 57.

    Deng, Y. et al. Upland soil cluster gamma dominates methanotrophic communities in upland grassland soils. Sci. Total Environ. 670, 826–836 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Henckel, T., Friedrich, M. & Conrad, R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Lieberman, R. L. & Rosenzweig, A. C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Freitag, T. E. & Prosser, J. I. Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl. Environ. Microbiol. 75, 6679–6687 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 144, 2377–2406 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Schnell, S. & King, G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 3514–3521 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    MathSciNet  Google Scholar 

  • 64.

    Shannon, C. E. A. mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet  MATH  Article  Google Scholar 

  • 65.

    Li, Q. et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environ. Res. Lett. 13, 044029 (2018).

    ADS  Article  CAS  Google Scholar 

  • 66.

    Li, Q., Song, X., Gu, H. & Gao, F. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations. Sci. Rep. 6, 28235 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).

    Article  Google Scholar 

  • 68.

    Lin, Y. et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic ultisol. Soil Biol. Biochem. 123, 218–228 (2018).

    CAS  Article  Google Scholar 

  • 69.

    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    PubMed  Article  Google Scholar 

  • 70.

    Zhou, X., Guo, Z., Chen, C. & Jia, Z. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences 14, 2101–2111 (2017).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Vitousek, P. M. et al. Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737 (1997).

    Google Scholar 

  • 73.

    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    PubMed  Article  Google Scholar 

  • 74.

    Serna-Chavez, H. M. & Bodegom, P. M. V. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).

    Article  Google Scholar 

  • 75.

    Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61, 610–616 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Högberg, M. N., Högberg, P. & Myrold, D. D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?. Oecologia 150, 590–601 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 77.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).

    Google Scholar 

  • 78.

    Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 79.

    Topp, E. & Pettey, E. Soils as sources and sinks for atmospheric methane. Can. J. Soil Sci. 77, 167–177 (1997).

    CAS  Article  Google Scholar 

  • 80.

    Bender, M. & Conrad, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 27, 1517–1527 (1995).

    CAS  Article  Google Scholar 

  • 81.

    Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7(8), 1150–1161 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Degelmann, D. M., Borken, W., Drake, H. L. & Kolb, S. Different atmospheric methane-oxidizing communities in European Beech and Norway Spruce Soils. Appl. Environ. Microbiol. 76(10), 3228–3235 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Li, S., Yu, Y. & He, S. Summary of research on dissolved organic carbon (DOC). Soil Environ. Sci. 11, 422–429 (2002).

    Google Scholar 

  • 84.

    Zhang, R. et al. Nitrogen deposition enhances photosynthesis in Moso bamboo but increases susceptibility to other stress factors. Front. Plant Sci. 8, 1975 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Wan, X. et al. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387, 103–116 (2015).

    CAS  Article  Google Scholar 

  • 86.

    Demoling, F., Figueroa, D. & Bååth, E. Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem. 39, 485–2495 (2007).

    Article  CAS  Google Scholar 

  • 87.

    Aronson, E. L. & Helliker, B. R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91, 3242–3251 (2010).

    CAS  Article  Google Scholar 

  • 88.

    Cheng, S. et al. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition: a review. Acta Ecol. Sin. 32, 4914–4923 (2012).

    ADS  CAS  Article  Google Scholar 

  • 89.

    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 90.

    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).

    ADS  Article  Google Scholar 

  • 91.

    Song, X., Li, Q. & Gu, H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations. Plant Soil 410, 207–215 (2017).

    CAS  Article  Google Scholar 

  • 92.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Article  Google Scholar 

  • 93.

    Li, Y. et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 122, 173–185 (2018).

    CAS  Article  Google Scholar 

  • 94.

    Lu, R. Methods for Soil Agro-chemistry Analysis (China Agricultural Science and Technology Press, Beijing, 2000).

    Google Scholar 

  • 95.

    Bourne, D. G., Mcdonald, I. R. & Murrell, J. C. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl. Environ. Microbiol. 67, 3802 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 97.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 98.

    Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4, e00592-e613 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 99.

    Kou, Y. et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biol. Biochem. 111, 104–114 (2017).

    CAS  Article  Google Scholar 

  • 100.

    Kou, Y. et al. Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Sci. Total Environ. 669, 62–69 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 101.

    Wei, H. et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 9, 1693 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 102.

    Liu, W. et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 101, e03053 (2020).

    PubMed  Google Scholar 

  • 103.

    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Claude Grunitzky MBA '12 on launching TRUE Africa University

    A multifaceted approach to understanding bat community response to disturbance in a seasonally dry tropical forest