in

Non-structural carbohydrates mediate seasonal water stress across Amazon forests

  • 1.

    Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 86, 495–516 (2016).

    Article 

    Google Scholar 

  • 2.

    Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees–from what we can measure to what we want to know. N. Phytol. 211, 386–403 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. N. Phytol. 197, 850–861 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Doughty, C. E. et al. Source and sink carbon dynamics and carbon allocation in the Amazon basin. Glob. Biogeochem. Cycles 29, 645–655 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Mcdowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).

    Article 

    Google Scholar 

  • 6.

    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. N. Phytol. 186, 274–281 (2010).

    Article 

    Google Scholar 

  • 7.

    Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345 (1982).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Adams, H. D. et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. N. Phytol. 197, 1142–1151 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 10.

    McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Phillips, O. L. et al. Drought Sensitivity of the Amazon Rainforest. Science (80-.) 323, 1344–1347 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science (80-.) 331, 554–554 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. U.S.A. 112, 13172–13177 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Jones, S. et al. The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences https://doi.org/10.5194/bg-2019-452 (2019).

  • 17.

    Dünisch, O. & Puls, J. Changes in content of reserve materials in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. J. Appl. Bot. 77, 10–16 (2003).

    Google Scholar 

  • 18.

    Würth, M. K. R., Peláez-Riedl, S., Wright, S. J. & Körner, C. Non-structural carbohydrate pools in a tropical forest. Oecologia 143, 11–24 (2005).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Dickman, L. T. et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant Cell Environ. 42, 1705–1714 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Malhi, Y. et al. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 311–329 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).

    ADS 
    Article 

    Google Scholar 

  • 24.

    de Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. R. Soc. B Biol. Sci. 283, 20161587 (2016).

    Article 

    Google Scholar 

  • 26.

    Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 65, 667–687 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Tixier, A., Orozco, J., Amico Roxas, A., Earles, J. M. & Zwieniecki, M. A. Diurnal variation in non-structural carbohydrate storage in trees: remobilization and vertical mixing. Plant Physiol. 178, 1602–1613 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Landhäusser, S. M. et al. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiol. 38, 1764–1778 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    MacNeill, G. J. et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Bot. 68, 4433–4453 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Nikinmaa, E. et al. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ. 36, 655–669 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).

    Article 

    Google Scholar 

  • 33.

    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182–183, 128–144 (2013).

    Article 

    Google Scholar 

  • 35.

    AbdElgawad, H. et al. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant. Cell Environ. https://doi.org/10.1111/pce.13813 (2020).

  • 36.

    Malhi, Y. et al. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol. Divers. 7, 85–105 (2014).

    Article 

    Google Scholar 

  • 37.

    Sánchez, F. J., Manzanares, M., De Andres, E. F., Tenorio, J. L. & Ayerbe, L. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. F. Crop. Res. 59, 225–235 (1998).

    Article 

    Google Scholar 

  • 38.

    Morgan, J. M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35, 299–319 (1984).

    Article 

    Google Scholar 

  • 39.

    Thalmann, M. & Santelia, D. Starch as a determinant of plant fitness under abiotic stress. N. Phytol. 214, 943–951 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Guo, J. S., Gear, L., Hultine, K. R., Koch, G. W. & Ogle, K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. Plant Cell Environ. https://doi.org/10.1111/pce.13749 (2020).

  • 41.

    Kuang, Y., Xu, Y., Zhang, L., Hou, E. & Shen, W. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front. Plant Sci. 8, 1–13 (2017).

    Article 

    Google Scholar 

  • 42.

    Turner, N. C. Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 69, 3223–3233 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Kandler, O. & Hopf, H. in Carbohydrates: Structure and Function. Vol. 3, 221–270 (Elsevier, 1980).

  • 44.

    Deslauriers, A. et al. Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann. Bot. 114, 335–345 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Ford, C. W. Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23, 1007–1015 (1984).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D. & Pinkard, E. A. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 34, 443–458 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450 (2002).

    Article 

    Google Scholar 

  • 48.

    Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).

    Article 

    Google Scholar 

  • 49.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 1, 1–5 (2016).

    Google Scholar 

  • 50.

    Sombroek, W. Spatial and temporal patterns of amazon rainfall. AMBIO A J. Hum. Environ. 30, 388–396 (2001).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 52.

    Hoch, G., Popp, M. & Korner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98, 361–374 (2002).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Dalagnol, R., Wagner, F. H., Galvão, L. S. & Aragão, L. E. O. C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America. Zenodo https://doi.org/10.5281/ZENODO.3159488 (2019).

  • 54.

    Dalagnol, R., Wagner, F. H., Galvão, L. S., Nelson, B. W. & De Aragão, L. E. O. E. C. Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences 15, 6087–6104 (2018).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Fonseca, L. D. M. et al. Phenology and seasonal ecosystem productivity in an Amazonian floodplain forest. Remote Sens. 11, 1–17 (2019).

    Article 

    Google Scholar 

  • 56.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Hijmans, R. J. et al. Raster: Geographic Data Analysis And Modeling. (R package, 2020).

  • 58.

    Bivand, R. et al. Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (R package, 2020).

  • 59.

    R Core Team. R: A Language And Environment For Statistical Computing. URL https://www.R-project.org/. (R Foundation for Statistical Computing, 2018).

  • 60.

    Hull, T. E., Fairgrieve, T. F. & Tang, P. T. P. Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw. 20, 215–244 (1994).

    MATH 
    Article 

    Google Scholar 

  • 61.

    De Mendiburu, F. Agricolae: Statistical Procedures For Agricultural Research (R package version 1.1, 2014).

  • 62.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

  • 63.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (R package version 0.1.8, 2020).

  • 64.

    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article 

    Google Scholar 

  • 65.

    Coelho de Souza, F. et al. Trait data from: ‘Evolutionary heritage influences Amazon tree ecology’. ForestPlots.net . https://doi.org/10.5521/FORESTPLOTS.NET/2016_4 (2016).

  • 66.

    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October 2, 1–6 (2007).

  • 67.

    Signori-Müller, C. et al. Trait data from: ‘Non-structural carbohydrates mediate seasonal water stress across Amazon forests’. ForestPlots.net 5521 https://doi.org/10.5521/forestplots.net/2021_3 (2021).

  • 68.

    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013). 

  • 69.

    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).


  • Source: Ecology - nature.com

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    President Reif urges two-track strategy to achieve global climate goals in 30 years