in

Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific

  • 1.

    Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. A Math. Phys. Eng. Sci. 369, 835–841 (2011).

    Google Scholar 

  • 2.

    Ellis, E., Maslin, M. A., Boivin, N. & Bauer, A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).

    Article 

    Google Scholar 

  • 3.

    Ruddiman, W. F. The Anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Gallery, R. E. in Ecology and the Environment (ed. Monson, R. K.) 247–272 (Springer, 2014).

  • 6.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article 

    Google Scholar 

  • 9.

    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Zalasiewicz, J. et al. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19, 55–60 (2017).

    Article 

    Google Scholar 

  • 12.

    Syvitski, J. et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. https://doi.org/10.1038/s43247-020-00029-y (2020).

  • 13.

    Ruddiman, W. F. Three flaws in defining a formal ‘Anthropocene’. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133318783142 (2018).

  • 14.

    Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).

    Article 

    Google Scholar 

  • 15.

    Roberts, P., Boivin, N. & Kaplan, J. O. Finding the Anthropocene in tropical forests. Anthropocene 23, 5–16 (2018).

    Article 

    Google Scholar 

  • 16.

    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Crosby, A. W. The Columbian Exchange: Biological and Cultural Consequences of 1492 (Greenwood Publishing Group, 1972).

  • 19.

    Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Denevan, W. M. Estimating the Aboriginal population of Latin America in 1492: methodological synthesis. Publ. Ser. Conf. Lat. Am. Geogr. 5, 125–132 (1976).

    Google Scholar 

  • 21.

    Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

    Article 

    Google Scholar 

  • 22.

    Denevan, W. M. The Native Population of the Americas in 1492 (Univ. Wisconsin Press, 1992).

  • 23.

    Denevan, W. M. After 1492: nature rebounds. Geogr. Rev. 106, 381–398 (2016).

    Article 

    Google Scholar 

  • 24.

    Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. Neotropical human–landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011).

    Article 

    Google Scholar 

  • 26.

    Power, M. J. et al. Climatic control of the biomass-burning decline in the Americas after ad 1500. Holocene 23, 3–13 (2013).

    Article 

    Google Scholar 

  • 27.

    Mann, C. C. Uncovering the New World Columbus Created (Knopf Publishing Group, 2011).

  • 28.

    Hung, H.-C. et al. Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia. Proc. Natl Acad. Sci. USA 104, 19745–19750 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Newson, L. A. Conquest and Pestilence in the Early Spanish Philippines (Univ. Hawaii Press, 2009).

  • 30.

    Amano, N., Bankoff, G., Findley, D. M., Barretto-Tesoro, G. & Roberts, P. Archaeological and historical insights into the ecological impacts of pre-colonial and colonial introductions into the Philippine Archipelago. Holocene 31, 313–330 (2021).

    Article 

    Google Scholar 

  • 31.

    Acabado, S. B. in Irrigated Taro (Colocasia esculenta) in the Indo-Pacific (Senri Ethnological Studies 78) (eds Spriggs, M. et al.) 285–305 (National Museum of Ethnology, 2012).

  • 32.

    Junker, L. L. Raiding, Trading, and Feasting: The Political Economy of Philippine Chiefdoms (Ateneo de Manila Univ. Press, 2000).

  • 33.

    Amano, N., Piper, P. J., Hung, H.-C. & Bellwood, P. Introduced domestic animals in the Neolithic and Metal Age of the Philippines: evidence from Nagsabaran, Northern Luzon. J. Isl. Coast. Archaeol. 8, 317–335 (2013).

    Article 

    Google Scholar 

  • 34.

    Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Article 

    Google Scholar 

  • 35.

    Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 37.

    Berrio, J. C., Hooghiemstra, H., Behling, H., Botero, P. & Van der Borg, K. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12, 35–48 (2002).

    Google Scholar 

  • 38.

    Berrío, J. C., Hooghiemstra, H., Marchant, R. & Rangel, O. Late-glacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. J. Quat. Sci. 17, 667–682 (2002).

    Article 

    Google Scholar 

  • 39.

    Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Flantua, S. G. A. et al. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate 12, 483–523 (2016).

    Google Scholar 

  • 41.

    Polissar, P. J. et al. Solar modulation of Little Ice Age climate in the tropical Andes. Proc. Natl Acad. Sci. USA 103, 8937–8942 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Leyden, B. W. et al. in The Managed Mosaic: Ancient Maya Agriculture and Resource Use (ed. Fedick, S. L.) (Univ. Utah Press, 1996).

  • 44.

    Dodson, J. R. & Intoh, M. Prehistory and palaeoecology of Yap, Federated States of Micronesia. Quat. Int. 59, 17–26 (1999).

    Article 

    Google Scholar 

  • 45.

    Athens, J. S. & Ward, J. V. Holocene vegetation, savanna origins and human settlement of Guam. Rec. Aust. Mus. Suppl. 29, 15–30 (2004).

    Article 

    Google Scholar 

  • 46.

    Levin, M. J. & Ayres, W. S. Managed agroforests, swiddening, and the introduction of pigs in Pohnpei, Micronesia: phytolith evidence from an anthropogenic landscape. Quat. Int. 434, 70–77 (2017).

    Article 

    Google Scholar 

  • 47.

    Chen, S.-H. et al. Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. J. Paleolimnol. 41, 315–327 (2009).

    Article 

    Google Scholar 

  • 48.

    Stevenson, J., Siringan, F., Finn, J. A. N., Madulid, D. & Heijnis, H. Paoay Lake, northern Luzon, the Philippines: a record of Holocene environmental change. Glob. Change Biol. 16, 1672–1688 (2010).

    Article 

    Google Scholar 

  • 49.

    Wigboldus, J. S. A History of the Minahasa c. 1615–1680. Archipel 34, 63–101 (1987).

    Article 

    Google Scholar 

  • 50.

    United States Office of the Chief of Naval Operations. West Caroline Islands (Office of the Chief of Naval Operations, Navy Department, 1943).

  • 51.

    De Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Leal, C. Landscapes of Freedom: Building a Postemancipation Society in the Rainforests of Western Colombia (Univ. Arizona Press, 2018).

  • 53.

    Block, D. Mission Culture on the Upper Amazon: Native Tradition, Jesuit Enterprise & Secular Policy in Moxos, 16601880 (Univ. Nebraska Press, 1994).

  • 54.

    Callaghan, R. & Fitzpatrick, S. M. On the relative isolation of a Micronesian archipelago during the historic period: the Palau case-study. Int. J. Nautical Archaeol. 36, 353–364 (2007).

    Article 

    Google Scholar 

  • 55.

    Da Silva, C. M. The miracle of the Brazilian Cerrados as a juggernaut: soil, science, and national culture. Hispanic Issues Ser. 24, 98–116 (2019).

    Google Scholar 

  • 56.

    Goldberg, W. M. The Geography, Nature and History of the Tropical Pacific and Its Islands (Springer, 2017).

  • 57.

    Schwaller, R. C. Contested conquests: African maroons and the incomplete conquest of Hispaniola, 1519–1620. Americas 75, 609–638 (2018).

    Article 

    Google Scholar 

  • 58.

    Acabado, S. B. et al. The short history of the Ifugao rice terraces: a local response to the Spanish conquest. J. Field Archaeol. 44, 195–214 (2019).

    Article 

    Google Scholar 

  • 59.

    Iriarte, J. et al. The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 248, 106582 (2020).

    Article 

    Google Scholar 

  • 60.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Graham, N. R., Gruner, D. S., Lim, J. Y. & Gillespie, R. G. Island ecology and evolution: challenges in the Anthropocene. Environ. Conserv. 44, 323–335 (2017).

    Article 

    Google Scholar 

  • 62.

    Roos, C. I. Scale in the study of Indigenous burning. Nat. Sustain. 3, 898–899 (2020).

    Article 

    Google Scholar 

  • 63.

    Lu, Z., Liu, Z., Zhu, J. & Cobb, K. M. A review of paleo El Niño-Southern Oscillation. Atmosphere https://doi.org/10.3390/atmos9040130 (2018).

  • 64.

    Shi, F., Li, J. & Wilson, R. J. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci. Rep. 4, 6739 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Newton, A., Thunell, R. & Stott, L. Climate and hydrographic variability in the Indo-Pacific Warm Pool during the last millennium. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027234 (2006).

  • 66.

    Chepstow-Lusty, A. & Winfield, M. Inca agroforestry: lessons from the past. Ambio 29, 322–328 (2000).

    Article 

    Google Scholar 

  • 67.

    Nunn, P. Environmental catastrophe in the Pacific Islands around A.D. 1300. Geoarchaeology 15, 715–740 (2000).

    Article 

    Google Scholar 

  • 68.

    Robinson, M. et al. Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Sci. Rep. 8, 7800 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Green, W. A. The New World and the rise of European capitalist hegemony: some historiographical perspectives. Itinerario 10, 53–68 (1986).

    Article 

    Google Scholar 

  • 70.

    Wolf, E. R. Europe and the People Without History (Univ. California Press, 2010).

  • 71.

    Castilla-Beltrán, A. et al. Columbus’ footprint in Hispaniola: a paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic. Anthropocene 22, 66–80 (2018).

    Article 

    Google Scholar 

  • 72.

    Goman, M. & Byrne, R.A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8, 83–89 (1998).

    Article 

    Google Scholar 

  • 73.

    Francis, X. & Hezel, S. J. Disease in Micronesia: a historical survey. Pac. Health Dialogue 16, 11–25 (2010).

    Google Scholar 

  • 74.

    Jones, J. G. Pollen Evidence of Prehistoric Forest Modification and Maya Cultivation in Belize. PhD thesis, Texas A&M Univ. (1991).

  • 75.

    Rojas, M., Arias, P. A., Flores-Aqueveque, V., Seth, A. & Vuille, M. The South American monsoon variability over the last millennium in climate models. Climate 12, 1681–1691 (2016).

    Google Scholar 

  • 76.

    Rosenthal, Y., Linsley, B. K. & Oppo, D. W.Pacific ocean heat content during the past 10,000 years. Science 342, 617–621 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Blois, J. L., Williams, J. W., Grimm, E. C., Jackson, S. T. & Graham, R. W. A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30, 1926–1939 (2011).

    Article 

    Google Scholar 

  • 78.

    Flantua, S. G. A., Blaauw, M. & Hooghiemstra, H. Geochronological database and classification system for age uncertainties in Neotropical pollen records. Climate 12, 387–414 (2016).

    Google Scholar 

  • 79.

    Marchant, R. et al. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate 5, 725–767 (2009).

    Google Scholar 

  • 80.

    Juggins, S. rioja: Analysis of Quaternary Science Data. R package version 0.9-21. https://cran.r-project.org/package=rioja (2014)..

  • 81.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  • 82.

    Hamilton, R., Penny, D. & Hall, T. L. Forest, fire & monsoon: investigating the long-term threshold dynamics of south-east Asia’s seasonally dry tropical forests. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106334 (2020).

  • 83.

    Bhagwat, S. A., Nogué, S. & Willis, K. J. Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol. Conserv. 153, 108–117 (2012).

    Article 

    Google Scholar 

  • 84.

    Blarquez, O. et al. paleofire: an R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 72, 255–261 (2014).

    Article 

    Google Scholar 

  • 85.

    Rohatgi, A. WebPlotDigitizer v4.2 https://automeris.io/WebPlotDigitizer (2019).

  • 86.

    Blaauw, M. & Christen, J. A.Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Article 

    Google Scholar 

  • 87.

    Plumpton, H., Whitney, B. & Mayle, F. Ecosystem turnover in palaeoecological records: the sensitivity of pollen and phytolith proxies to detecting vegetation change in southwestern Amazonia. Holocene 29, 1720–1730 (2019).

    Article 

    Google Scholar 

  • 88.

    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).

  • 89.

    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).

    Article 

    Google Scholar 

  • 90.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article 

    Google Scholar 

  • 91.

    Dowle, M. et al. data.table: Extension of ‘data.frame’. R package version 0.9-21. https://cran.r-project.org/web/packages/data.table (2018).

  • 92.

    Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).

  • 93.

    Doeppers, D. F. The development of Philippine cities before 1900. J. Asian Stud. 31, 769–792 (1972).

    Article 

    Google Scholar 

  • 94.

    Dobyns, H. F. Disease transfer at contact. Annu. Rev. Anthropol. 22, 273–291 (1993).

    Article 

    Google Scholar 

  • 95.

    Watts, W. A. & Bradbury, J. P. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17, 56–70 (1982).

    Article 

    Google Scholar 

  • 96.

    Van Hengstum, P. J. et al. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin. Sci. Rep. 6, 21728 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Crausbay, S. D., Martin, P. H., Kelly, E. F. & McGlone, M. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire. J. Ecol. 103, 891–903 (2015).

    Article 

    Google Scholar 

  • 98.

    Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).

    Article 

    Google Scholar 

  • 99.

    Carson, J. F. et al. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc. Natl Acad. Sci. USA 111, 10497–10502 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Berrio, J. C., Hooghiemstra, H., Behling, H. & van der Borg, K. Late Holocene history of savanna gallery forest from Carimagua area, Colombia. Rev. Palaeobot. Palynol. 111, 295–308 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Ledru, M.-P. Late quaternary environmental and climatic changes in central Brazil. Quat. Res. 39, 90–98 (1993).

    Article 

    Google Scholar 

  • 102.

    Ledru, M.-P., Behling, H., Fournier, M., Martin, L. & Servant, M. Localisation de la forêt d’Araucaria du Brésil au cours de l’Holocène. Implications paléoclimatiques. C. R. Acad. Sci. Paris 317, 517–521 (1994).

    Google Scholar 

  • 103.

    Behling, H. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J. Paleolimnol. 14, 253–268 (1995).

    Article 

    Google Scholar 

  • 104.

    Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 407–422 (1997).

    Article 

    Google Scholar 

  • 105.

    Behling, H., Hooghiemstra, H. & Negret, A. J. Holocene history of the Chocó rain forest from Laguna Piusbi, southern Pacific lowlands of Colombia. Quat. Res. 50, 300–308 (1998).

    Article 

    Google Scholar 

  • 106.

    Vélez, M. I. et al. Late Holocene environmental history of southern Chocó region, Pacific Colombia; sediment, diatom and pollen analysis of core El Caimito. Palaeogeogr. Palaoclimatol. Palaeoecol. 173, 197–214 (2001).

    Article 

    Google Scholar 

  • 107.

    Vélez, M. I., Berrío, J. C., Hooghiemstra, H., Metcalfe, S. & Marchant, R. Palaeoenvironmental changes during the last ca. 8590 calibrated yr (7800 radiocarbon yr) in the dry forest ecosystem of the Patía Valley, Southern Colombian Andes: a multiproxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 279–302 (2005).

    Article 

    Google Scholar 

  • 108.

    Behling, H., Negret, A. J. & Hooghiemstra, H. Late Quaternary vegetational and climatic change in the Popayán region, southern Colombian Andes. J. Quat. Sci. 13, 43–53 (1998).

    Article 

    Google Scholar 

  • 109.

    Wille, M., Hooghiemstra, H., Behling, H., van der Borg, K. & Negret, A. J. Environmental change in the Colombian subandean forest belt from 8 pollen records: the last 50 kyr. Veg. Hist. Archaeobot. 10, 61–77 (2001).

    Article 

    Google Scholar 

  • 110.

    Epping, I. Environmental Change in the Colombian Upper Forest Belt. MSc thesis, Univ. Amsterdam (2009).

  • 111.

    Niemann, H. & Behling, H. Late Pleistocene and Holocene environmental change inferred from the Cocha Caranga sediment and soil records in the southeastern Ecuadorian Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 1–14 (2009).

    Article 

    Google Scholar 

  • 112.

    Graf, K. in Pollendiagramme aus den Anden, eine Synthese zur Klimageschichte und Vegetationsentwicklung Seit der letzten Eiszeit. Vol. 34 (Univ. Zurich, 1992).

  • 113.

    Kuhry, P., Salomons, J. B., Riezebos, P. A. & Van der Hammen, T. in Studies on Tropical Andean Ecosystems/Estudios de Ecosistemas Tropandinos: La Cordillera Central Colombiana Transecto Parque Los Nevados (eds van der Hammen, T. et al.) 227–261 (Cramer, 1983).

  • 114.

    Velásquez-R, C. A. & Hooghiemstra, H. Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes. Rev. Palaeobot. Palynol. 194, 38–49 (2013).

    Article 

    Google Scholar 

  • 115.

    Rull, V., Salgado-Labouriau, M.-L., Schubert, C. & Valastro, S. Jr. Late Holocene temperature depression in the Venezuelan Andes: palynological evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 60, 109–121 (1987).

    Article 

    Google Scholar 

  • 116.

    Van der Hammen, T. Palinología de la región de “Laguna de los Bobos”: historia de su clima, vegetación y agricultura durante los últimos 5.000 años. Revista de la Academia Colombiana de Ciencias Exactas. Físicas Nat. 11, 359–361 (1962).

    Google Scholar 

  • 117.

    Wang, L. C. et al. Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan. Climate 10, 1857–1869 (2014).

    CAS 

    Google Scholar 

  • 118.

    Dam, R. A. C., Fluin, J., Suparan, P. & van der Kaars, S. Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr B.P. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 147–183 (2001).

    Article 

    Google Scholar 

  • 119.

    Suparan, P., Dam, R. A. C., van der Kaars, S. & Wong, T. E. Late Quaternary tropical lowland environments on Halmahera, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 229–258 (2001).

    Article 

    Google Scholar 

  • 120.

    Athens, J. S. & Ward, J. V. Holocene Paleoenvironmental Investigations on Ngerekebesang, Koror, South Babeldaob, and Peleliu Islands, Palau (International Archaeological Research Institute, 2002).

  • 121.

    Athens, J. S. & Ward, J. V. Palau Compact Road Archaeological Investigations, Babeldaob Island, Republic of Palau. Phase I: Intensive Archaeological Survey. Volume IV: Holocene Paleoenvironment and Landscape Change (International Archaeological Research Institute, 2005).


  • Source: Ecology - nature.com

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    Behavioral traits and territoriality in the symbiotic scaleworm Ophthalmonoe pettiboneae