in

North American boreal forests are a large carbon source due to wildfires from 1986 to 2016

  • 1.

    Kasischke, E. S. & Stocks, B. J. Fire, Climate Change, and Carbon Cycling in the Boreal Forest (Springer-Verlag, 2000).

    Google Scholar 

  • 2.

    Kurz, W. A. & Apps, M. J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526–547. https://doi.org/10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 (1999).

    Article 

    Google Scholar 

  • 3.

    Amiro, B. D. et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol. 136, 237–251. https://doi.org/10.1016/j.agrformet.2004.11.012 (2006).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Li, F., Lawrence, D. M. & Bond-Lamberty, B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett. 12, 044014. https://doi.org/10.1088/1748-9326/aa6685 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020876 (2004).

    Article 

    Google Scholar 

  • 6.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. https://doi.org/10.1029/2006GL025677 (2006).

    Article 

    Google Scholar 

  • 7.

    de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44. https://doi.org/10.1016/j.foreco.2012.09.027 (2013).

    Article 

    Google Scholar 

  • 8.

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228. https://doi.org/10.1038/ngeo2352 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Montes-Helu, M. C. et al. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. Agric. For. Meteorol. 149, 491–500. https://doi.org/10.1016/j.agrformet.2008.09.011 (2009).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21. https://doi.org/10.1007/bf00346960 (1980).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89. https://doi.org/10.1038/nature06272 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Gewehr, S., Drobyshev, I., Berninger, F. & Bergeron, Y. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44, 487–498. https://doi.org/10.1139/cjfr-2013-0481 (2014).

    Article 

    Google Scholar 

  • 13.

    Sullivan, B. W. et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry 104, 251–265. https://doi.org/10.1007/s10533-010-9499-1 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159. https://doi.org/10.1038/298156a0 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008gb003327 (2009).

    Article 

    Google Scholar 

  • 16.

    Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob. Change Biol. 24, 4251–4265. https://doi.org/10.1111/gcb.14287 (2018).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Kulmala, L. et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agric. For. Meteorol. 188, 33–44. https://doi.org/10.1016/j.agrformet.2013.12.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Yoshikawa, K., Bolton, W. R., Romanovsky, V. E., Fukuda, M. & Hinzman, L. D. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J. Geophys. Res. Atmos. 107, 4–14. https://doi.org/10.1029/2001jd000438 (2002).

    Article 

    Google Scholar 

  • 19.

    Tsuyuzaki, S., Kushida, K. & Kodama, Y. Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska. Clim. Change 93, 517. https://doi.org/10.1007/s10584-008-9505-y (2008).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hamman, S. T., Burke, I. C. & Stromberger, M. E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 39, 1703–1711. https://doi.org/10.1016/j.soilbio.2007.01.018 (2007).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Atchley, A. L., Kinoshita, A. M., Lopez, S. R., Trader, L. & Middleton, R. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone J. https://doi.org/10.2136/vzj2018.05.0099 (2018).

    Article 

    Google Scholar 

  • 22.

    Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919. https://doi.org/10.1038/ismej.2014.36 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Ribeiro-Kumara, C., Köster, E., Aaltonen, H. & Köster, K. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 184, 109328. https://doi.org/10.1016/j.envres.2020.109328 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82. https://doi.org/10.1016/j.geoderma.2014.07.001 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Conard, S. G. & Ivanova, G. A. Wildfire in Russian boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 98, 305–313. https://doi.org/10.1016/S0269-7491(97)00140-1 (1997).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000380 (2007).

    Article 

    Google Scholar 

  • 27.

    French, N. H. F., Kasischke, E. S. & Williams, D. G. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res. Atmos. 107, 7–11. https://doi.org/10.1029/2001JD000480 (2002).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kajii, Y. et al. Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J. Geophys. Res. Atmos. 107, 4–8. https://doi.org/10.1029/2001JD001078 (2002).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959–1999. Can. J. For. Res. 31, 512–525. https://doi.org/10.1139/x00-197 (2001).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kasischke, E. S. et al. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2004GB002300 (2005).

    Article 

    Google Scholar 

  • 31.

    Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247. https://doi.org/10.1007/BF00137988 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Mouillot, F., Narasimha, A., Balkanski, Y., Lamarque, J.-F. & Field, C. B. Global carbon emissions from biomass burning in the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024707 (2006).

    Article 

    Google Scholar 

  • 33.

    Cansler, C. A. & McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol. Appl. 24, 1037–1056 (2014).

    Article 

    Google Scholar 

  • 34.

    Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. Atmos. 107, 3–26. https://doi.org/10.1029/2001jd001244 (2002).

    Article 

    Google Scholar 

  • 35.

    Zackrisson, O. Influence of forest fires on the north Swedish boreal forest. Oikos 29, 22–32. https://doi.org/10.2307/3543289 (1977).

    Article 

    Google Scholar 

  • 36.

    Allen, J. L. & Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildl. Fire. https://doi.org/10.1071/WF08034 (2008).

    Article 

    Google Scholar 

  • 37.

    French, N. H. F. et al. Using landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 17, 443–462. https://doi.org/10.1071/WF08007 (2008).

    Article 

    Google Scholar 

  • 38.

    Hoy, E., French, N., Turetsky, M., Trigg, S. & Kasischke, E. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildl. Fire 17, 500–514. https://doi.org/10.1071/WF08107 (2008).

    Article 

    Google Scholar 

  • 39.

    Soverel, N. O., Perrakis, D. D. B. & Coops, N. C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 114, 1896–1909. https://doi.org/10.1016/j.rse.2010.03.013 (2010).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Boby, L. A., Schuur, E. A. G., Mack, M. C., Verbyla, D. & Johnstone, J. F. Quantifying fire severity, carbon, and nitrogen emissions in Alaska’s boreal forest. Ecol. Appl. 20, 1633–1647. https://doi.org/10.1890/08-2295.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Rogers, B. M. et al. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. J. Geophys. Res. Biogeosci. 119, 1608–1629. https://doi.org/10.1002/2014jg002657 (2014).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Kasischke, E. S. & Hoy, E. E. Controls on carbon consumption during Alaskan wildland fires. Glob. Change Biol. 18, 685–699. https://doi.org/10.1111/j.1365-2486.2011.02573.x (2012).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Tan, Z., Tieszen, L. L., Zhu, Z., Liu, S. & Howard, S. M. An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin. Carbon Balance Manage. 2, 12. https://doi.org/10.1186/1750-0680-2-12 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755. https://doi.org/10.5194/bg-11-3739-2014 (2014).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601. https://doi.org/10.5194/bg-12-3579-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Boucher, J., Beaudoin, A., Hébert, C., Guindon, L. & Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildl. Fire 26, 32–45. https://doi.org/10.1071/WF15122 (2017).

    Article 

    Google Scholar 

  • 47.

    Moody, J. A. et al. Relations between soil hydraulic properties and burn severity. Int. J. Wildl. Fire 25, 279–293. https://doi.org/10.1071/WF14062 (2016).

    Article 

    Google Scholar 

  • 48.

    Ebel, B. A., Romero, O. C. & Martin, D. A. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrol. Process. 32, 2263–2278. https://doi.org/10.1002/hyp.13167 (2018).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Stinson, G. et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. Change Biol. 17, 2227–2244. https://doi.org/10.1111/j.1365-2486.2010.02369.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Goodale, C. L. et al. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891–899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • 51.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2003GB002199 (2005).

    Article 

    Google Scholar 

  • 52.

    Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310. https://doi.org/10.1111/geb.12125 (2014).

    Article 

    Google Scholar 

  • 53.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988. https://doi.org/10.1126/science.1201609 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. 26, 6062–6079. https://doi.org/10.1111/gcb.15158 (2020).

    ADS 
    Article 

    Google Scholar 

  • 55.

    French, N. H. F., Goovaerts, P. & Kasischke, E. S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD003635 (2004).

    Article 

    Google Scholar 

  • 56.

    Chen, G., Hayes, D. J. & David McGuire, A. Contributions of wildland fire to terrestrial ecosystem carbon dynamics in North America from 1990 to 2012. Glob. Biogeochem. Cycles 31, 878. https://doi.org/10.1002/2016gb005548 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Goetz, S. J. et al. Observations and assessment of forest carbon dynamics following disturbance in North America. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001733 (2012).

    Article 

    Google Scholar 

  • 58.

    Wiedinmyer, C. & Neff, J. C. Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance Manage. 2, 10–10. https://doi.org/10.1186/1750-0680-2-10 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260 (2013).

    CAS 
    Article 

    Google Scholar 

  • 60.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.5194/acp-10-11707-2010 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Hicke, J. A. et al. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob. Change Biol. 9, 1145–1157. https://doi.org/10.1046/j.1365-2486.2003.00658.x (2003).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Sparks, A. M. et al. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 15, 1173–1183. https://doi.org/10.5194/bg-15-1173-2018 (2018).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Amiro, B. D., Chen, J. M. & Liu, J. Net primary productivity following forest fire for Canadian ecoregions. Can. J. For. Res. 30, 939–947. https://doi.org/10.1139/x00-025 (2000).

    Article 

    Google Scholar 

  • 65.

    Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B. & Romme, W. H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. 104, 4782. https://doi.org/10.1073/pnas.0700180104 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Gower, S. T., McMurtrie, R. E. & Murty, D. Aboveground net primary production decline with stand age: Potential causes. Trends Ecol. Evol. 11, 378–382. https://doi.org/10.1016/0169-5347(96)10042-2 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Pare, D. & Bergeron, Y. Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J. Ecol. 83, 1001–1007. https://doi.org/10.2307/2261181 (1995).

    Article 

    Google Scholar 

  • 68.

    Ice, G., Neary, D. & Adams, P. Effects of wildfire on soils and watershed processes. J. For. 102, 16–20 (2004).

    Google Scholar 

  • 69.

    Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644. https://doi.org/10.1016/j.jenvman.2019.02.130 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 70.

    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 109, 49–61. https://doi.org/10.1007/s10533-011-9633-8 (2012).

    Article 

    Google Scholar 

  • 71.

    Köster, E. et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Sci. Total Environ. 601–602, 895–905. https://doi.org/10.1016/j.scitotenv.2017.05.246 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Auclair, A. N. D. & Carter, T. B. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res. 23, 1528–1536. https://doi.org/10.1139/x93-193 (1993).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Hayes, D. J. et al. Is the northern high-latitude land-based CO2 sink weakening?. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003813 (2011).

    Article 

    Google Scholar 

  • 74.

    Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026972 (2006).

    Article 

    Google Scholar 

  • 75.

    Osterkamp, T. E. et al. Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, USA. Arctic Antarct. Alpine Res. 32, 303–315. https://doi.org/10.1080/15230430.2000.12003368 (2000).

    Article 

    Google Scholar 

  • 76.

    Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035017 (2013).

    Article 

    Google Scholar 

  • 77.

    Beck, P. S. A. et al. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob. Change Biol. 17, 2853–2866. https://doi.org/10.1111/j.1365-2486.2011.02412.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Terrier, A., Girardin, M., Perie, C., Legendre, P. & Bergeron, Y. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol. Appl. 23, 21–35. https://doi.org/10.2307/23440814 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Miller, J. D. & Thode, A. E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 109, 66–80. https://doi.org/10.1016/j.rse.2006.12.006 (2007).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Key, C. H. & Benson, N. C. Landscape Assessment (LA). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA 1–55 (2006).

  • 81.

    Epting, J., Verbyla, D. & Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 96, 328–339. https://doi.org/10.1016/j.rse.2005.03.002 (2005).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Mitchell, T., Carter, T., Jones, P. & Hulme, M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Work. Pap. 55, 25 (2004).

    Google Scholar 

  • 83.

    FAO-Unesco. Soil Map of the World Vol. 1 (Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization, 1974).

    Google Scholar 

  • 84.

    Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240. https://doi.org/10.1038/363234a0 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 85.

    Genet, H. et al. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecol. Appl. 28, 5–27. https://doi.org/10.1002/eap.1641 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 86.

    Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31. https://doi.org/10.1038/ngeo1027 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Agro-ecological landuse transformation in oasis systems of Al Jabal Al Akhdar, northern Oman

    Effects of both climate change and human water demand on a highly threatened damselfly