in

North American boreal forests are a large carbon source due to wildfires from 1986 to 2016

  • 1.

    Kasischke, E. S. & Stocks, B. J. Fire, Climate Change, and Carbon Cycling in the Boreal Forest (Springer-Verlag, 2000).

    Google Scholar 

  • 2.

    Kurz, W. A. & Apps, M. J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526–547. https://doi.org/10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 (1999).

    Article 

    Google Scholar 

  • 3.

    Amiro, B. D. et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol. 136, 237–251. https://doi.org/10.1016/j.agrformet.2004.11.012 (2006).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Li, F., Lawrence, D. M. & Bond-Lamberty, B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett. 12, 044014. https://doi.org/10.1088/1748-9326/aa6685 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020876 (2004).

    Article 

    Google Scholar 

  • 6.

    Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. https://doi.org/10.1029/2006GL025677 (2006).

    Article 

    Google Scholar 

  • 7.

    de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44. https://doi.org/10.1016/j.foreco.2012.09.027 (2013).

    Article 

    Google Scholar 

  • 8.

    Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228. https://doi.org/10.1038/ngeo2352 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Montes-Helu, M. C. et al. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. Agric. For. Meteorol. 149, 491–500. https://doi.org/10.1016/j.agrformet.2008.09.011 (2009).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21. https://doi.org/10.1007/bf00346960 (1980).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89. https://doi.org/10.1038/nature06272 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Gewehr, S., Drobyshev, I., Berninger, F. & Bergeron, Y. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44, 487–498. https://doi.org/10.1139/cjfr-2013-0481 (2014).

    Article 

    Google Scholar 

  • 13.

    Sullivan, B. W. et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry 104, 251–265. https://doi.org/10.1007/s10533-010-9499-1 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159. https://doi.org/10.1038/298156a0 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008gb003327 (2009).

    Article 

    Google Scholar 

  • 16.

    Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob. Change Biol. 24, 4251–4265. https://doi.org/10.1111/gcb.14287 (2018).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Kulmala, L. et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agric. For. Meteorol. 188, 33–44. https://doi.org/10.1016/j.agrformet.2013.12.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Yoshikawa, K., Bolton, W. R., Romanovsky, V. E., Fukuda, M. & Hinzman, L. D. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J. Geophys. Res. Atmos. 107, 4–14. https://doi.org/10.1029/2001jd000438 (2002).

    Article 

    Google Scholar 

  • 19.

    Tsuyuzaki, S., Kushida, K. & Kodama, Y. Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska. Clim. Change 93, 517. https://doi.org/10.1007/s10584-008-9505-y (2008).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hamman, S. T., Burke, I. C. & Stromberger, M. E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 39, 1703–1711. https://doi.org/10.1016/j.soilbio.2007.01.018 (2007).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Atchley, A. L., Kinoshita, A. M., Lopez, S. R., Trader, L. & Middleton, R. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone J. https://doi.org/10.2136/vzj2018.05.0099 (2018).

    Article 

    Google Scholar 

  • 22.

    Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919. https://doi.org/10.1038/ismej.2014.36 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Ribeiro-Kumara, C., Köster, E., Aaltonen, H. & Köster, K. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 184, 109328. https://doi.org/10.1016/j.envres.2020.109328 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82. https://doi.org/10.1016/j.geoderma.2014.07.001 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Conard, S. G. & Ivanova, G. A. Wildfire in Russian boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 98, 305–313. https://doi.org/10.1016/S0269-7491(97)00140-1 (1997).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000380 (2007).

    Article 

    Google Scholar 

  • 27.

    French, N. H. F., Kasischke, E. S. & Williams, D. G. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res. Atmos. 107, 7–11. https://doi.org/10.1029/2001JD000480 (2002).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kajii, Y. et al. Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J. Geophys. Res. Atmos. 107, 4–8. https://doi.org/10.1029/2001JD001078 (2002).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959–1999. Can. J. For. Res. 31, 512–525. https://doi.org/10.1139/x00-197 (2001).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kasischke, E. S. et al. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2004GB002300 (2005).

    Article 

    Google Scholar 

  • 31.

    Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247. https://doi.org/10.1007/BF00137988 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Mouillot, F., Narasimha, A., Balkanski, Y., Lamarque, J.-F. & Field, C. B. Global carbon emissions from biomass burning in the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024707 (2006).

    Article 

    Google Scholar 

  • 33.

    Cansler, C. A. & McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol. Appl. 24, 1037–1056 (2014).

    Article 

    Google Scholar 

  • 34.

    Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. Atmos. 107, 3–26. https://doi.org/10.1029/2001jd001244 (2002).

    Article 

    Google Scholar 

  • 35.

    Zackrisson, O. Influence of forest fires on the north Swedish boreal forest. Oikos 29, 22–32. https://doi.org/10.2307/3543289 (1977).

    Article 

    Google Scholar 

  • 36.

    Allen, J. L. & Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildl. Fire. https://doi.org/10.1071/WF08034 (2008).

    Article 

    Google Scholar 

  • 37.

    French, N. H. F. et al. Using landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 17, 443–462. https://doi.org/10.1071/WF08007 (2008).

    Article 

    Google Scholar 

  • 38.

    Hoy, E., French, N., Turetsky, M., Trigg, S. & Kasischke, E. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildl. Fire 17, 500–514. https://doi.org/10.1071/WF08107 (2008).

    Article 

    Google Scholar 

  • 39.

    Soverel, N. O., Perrakis, D. D. B. & Coops, N. C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 114, 1896–1909. https://doi.org/10.1016/j.rse.2010.03.013 (2010).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Boby, L. A., Schuur, E. A. G., Mack, M. C., Verbyla, D. & Johnstone, J. F. Quantifying fire severity, carbon, and nitrogen emissions in Alaska’s boreal forest. Ecol. Appl. 20, 1633–1647. https://doi.org/10.1890/08-2295.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Rogers, B. M. et al. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. J. Geophys. Res. Biogeosci. 119, 1608–1629. https://doi.org/10.1002/2014jg002657 (2014).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Kasischke, E. S. & Hoy, E. E. Controls on carbon consumption during Alaskan wildland fires. Glob. Change Biol. 18, 685–699. https://doi.org/10.1111/j.1365-2486.2011.02573.x (2012).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Tan, Z., Tieszen, L. L., Zhu, Z., Liu, S. & Howard, S. M. An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin. Carbon Balance Manage. 2, 12. https://doi.org/10.1186/1750-0680-2-12 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755. https://doi.org/10.5194/bg-11-3739-2014 (2014).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601. https://doi.org/10.5194/bg-12-3579-2015 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Boucher, J., Beaudoin, A., Hébert, C., Guindon, L. & Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildl. Fire 26, 32–45. https://doi.org/10.1071/WF15122 (2017).

    Article 

    Google Scholar 

  • 47.

    Moody, J. A. et al. Relations between soil hydraulic properties and burn severity. Int. J. Wildl. Fire 25, 279–293. https://doi.org/10.1071/WF14062 (2016).

    Article 

    Google Scholar 

  • 48.

    Ebel, B. A., Romero, O. C. & Martin, D. A. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrol. Process. 32, 2263–2278. https://doi.org/10.1002/hyp.13167 (2018).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Stinson, G. et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. Change Biol. 17, 2227–2244. https://doi.org/10.1111/j.1365-2486.2010.02369.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Goodale, C. L. et al. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891–899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • 51.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2003GB002199 (2005).

    Article 

    Google Scholar 

  • 52.

    Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310. https://doi.org/10.1111/geb.12125 (2014).

    Article 

    Google Scholar 

  • 53.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988. https://doi.org/10.1126/science.1201609 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. 26, 6062–6079. https://doi.org/10.1111/gcb.15158 (2020).

    ADS 
    Article 

    Google Scholar 

  • 55.

    French, N. H. F., Goovaerts, P. & Kasischke, E. S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD003635 (2004).

    Article 

    Google Scholar 

  • 56.

    Chen, G., Hayes, D. J. & David McGuire, A. Contributions of wildland fire to terrestrial ecosystem carbon dynamics in North America from 1990 to 2012. Glob. Biogeochem. Cycles 31, 878. https://doi.org/10.1002/2016gb005548 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Goetz, S. J. et al. Observations and assessment of forest carbon dynamics following disturbance in North America. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001733 (2012).

    Article 

    Google Scholar 

  • 58.

    Wiedinmyer, C. & Neff, J. C. Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance Manage. 2, 10–10. https://doi.org/10.1186/1750-0680-2-10 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260 (2013).

    CAS 
    Article 

    Google Scholar 

  • 60.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.5194/acp-10-11707-2010 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Hicke, J. A. et al. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob. Change Biol. 9, 1145–1157. https://doi.org/10.1046/j.1365-2486.2003.00658.x (2003).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Sparks, A. M. et al. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 15, 1173–1183. https://doi.org/10.5194/bg-15-1173-2018 (2018).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Amiro, B. D., Chen, J. M. & Liu, J. Net primary productivity following forest fire for Canadian ecoregions. Can. J. For. Res. 30, 939–947. https://doi.org/10.1139/x00-025 (2000).

    Article 

    Google Scholar 

  • 65.

    Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B. & Romme, W. H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. 104, 4782. https://doi.org/10.1073/pnas.0700180104 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Gower, S. T., McMurtrie, R. E. & Murty, D. Aboveground net primary production decline with stand age: Potential causes. Trends Ecol. Evol. 11, 378–382. https://doi.org/10.1016/0169-5347(96)10042-2 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Pare, D. & Bergeron, Y. Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J. Ecol. 83, 1001–1007. https://doi.org/10.2307/2261181 (1995).

    Article 

    Google Scholar 

  • 68.

    Ice, G., Neary, D. & Adams, P. Effects of wildfire on soils and watershed processes. J. For. 102, 16–20 (2004).

    Google Scholar 

  • 69.

    Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644. https://doi.org/10.1016/j.jenvman.2019.02.130 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 70.

    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 109, 49–61. https://doi.org/10.1007/s10533-011-9633-8 (2012).

    Article 

    Google Scholar 

  • 71.

    Köster, E. et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Sci. Total Environ. 601–602, 895–905. https://doi.org/10.1016/j.scitotenv.2017.05.246 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Auclair, A. N. D. & Carter, T. B. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res. 23, 1528–1536. https://doi.org/10.1139/x93-193 (1993).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Hayes, D. J. et al. Is the northern high-latitude land-based CO2 sink weakening?. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003813 (2011).

    Article 

    Google Scholar 

  • 74.

    Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026972 (2006).

    Article 

    Google Scholar 

  • 75.

    Osterkamp, T. E. et al. Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, USA. Arctic Antarct. Alpine Res. 32, 303–315. https://doi.org/10.1080/15230430.2000.12003368 (2000).

    Article 

    Google Scholar 

  • 76.

    Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035017 (2013).

    Article 

    Google Scholar 

  • 77.

    Beck, P. S. A. et al. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob. Change Biol. 17, 2853–2866. https://doi.org/10.1111/j.1365-2486.2011.02412.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Terrier, A., Girardin, M., Perie, C., Legendre, P. & Bergeron, Y. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol. Appl. 23, 21–35. https://doi.org/10.2307/23440814 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Miller, J. D. & Thode, A. E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 109, 66–80. https://doi.org/10.1016/j.rse.2006.12.006 (2007).

    ADS 
    Article 

    Google Scholar 

  • 80.

    Key, C. H. & Benson, N. C. Landscape Assessment (LA). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA 1–55 (2006).

  • 81.

    Epting, J., Verbyla, D. & Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 96, 328–339. https://doi.org/10.1016/j.rse.2005.03.002 (2005).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Mitchell, T., Carter, T., Jones, P. & Hulme, M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Work. Pap. 55, 25 (2004).

    Google Scholar 

  • 83.

    FAO-Unesco. Soil Map of the World Vol. 1 (Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization, 1974).

    Google Scholar 

  • 84.

    Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240. https://doi.org/10.1038/363234a0 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 85.

    Genet, H. et al. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecol. Appl. 28, 5–27. https://doi.org/10.1002/eap.1641 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 86.

    Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31. https://doi.org/10.1038/ngeo1027 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity