in

Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo)

  • 1.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than the agricultural demand for pollination. Curr. Biol. 19, 915–918. https://doi.org/10.1016/j.cub.2009.03.071 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259. https://doi.org/10.1890/120126 (2013).

    Article  Google Scholar 

  • 7.

    Whitaker, T. & Davis, G. Cucurbits: Botany, Cultivation & Utilization (Biotech Books, Delhi, 2012).

    Google Scholar 

  • 8.

    Hurd, P. D. Jr., Linsley, E. G. & Whitaker, T. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234. https://doi.org/10.2307/2406514 (1971).

    Article  PubMed  Google Scholar 

  • 9.

    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161. https://doi.org/10.1603/EC10431 (2011).

    Article  PubMed  Google Scholar 

  • 10.

    Cane, J. H., Sampson, B. J. & Miller, S. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo). Environ. Entomol. 40, 614–620. https://doi.org/10.1603/EN10084 (2011).

    Article  PubMed  Google Scholar 

  • 11.

    Hurd, P. D. Jr. & Linsley, E. G. The squash and gourd bees-genera Peponapis Robertson and Xenoglossa Smith-inhabiting America north of Mexico (Hymenoptera: Apoidea). Hilgardia 35, 375–453. https://doi.org/10.3733/hilg.v35n15p375 (1964).

    Article  Google Scholar 

  • 12.

    López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B-Biol. Sci. 283, 20160443. https://doi.org/10.1098/rspb.2016.0443 (2016).

    Article  Google Scholar 

  • 13.

    Tepedino, V. J. The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377. Retrieved from https://www.jstor.org/stable/25084168 (1981).

  • 14.

    Patton, W. Generic arrangement of the bees allied to Melissodes and Anthophora. Bull. U. S. Geolog. Surv. 5, 471–479. Retrieved from https://books.google.ca/books?hl=en&lr=&id=R38uAAAAYAAJ&oi=fnd&pg=PA469&ots=LVcsvi2gE5&sig=xlz2XhDKuN5qMenv47JIRhYfy_8&redir_esc=y#v=onepage&q&f=false (1879).

  • 15.

    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).

    Article  Google Scholar 

  • 16.

    Hurd, P. D. Jr., Linsley, E. G. & Michelbacher, A. E. Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated cucurbits in California (Hymenoptera: Apoidea). Smiths. Contrib. Zool. 168, 1–17. Smithsonian Institution Press. Retrieved from https://repository.si.edu/bitstream/handle/10088/5347/SCtZ-0168-Lo_res.pdf?sequence=2 (1974).

  • 17.

    Mathewson, J. A. Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 41, 255–261. Retrieved from https://www.jstor.org/stable/25083703 (1968).

  • 18.

    Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting landscape effects. J. Econ. Entomol. 102, 563–573. https://doi.org/10.1603/029.102.0214 (2009).

    Article  PubMed  Google Scholar 

  • 19.

    Willis Chan, D. S., Prosser, R. S., Rodríguez-Gil, J. L. & Raine, N. E. Risks of exposure to systemic insecticides in agricultural soil in Ontario, Canada for the hoary squash bee (Peponapis pruinosa) and other ground-nesting bee species. Sci. Rep. 9, 11870. https://doi.org/10.1038/s41598-019-47805-1 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Sgolastra, F. et al. Pesticide exposure assessment paradign for solitary bees. Environ. Entomol. 48, 22–35. https://doi.org/10.1093/ee/nvy105 (2019).

    Article  PubMed  Google Scholar 

  • 21.

    Franklin, E. L. & Raine, N. E. Moving beyond honey bee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375. https://doi.org/10.1038/s41559-019-0987-y (2019).

    Article  PubMed  Google Scholar 

  • 22.

    Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 24, 73–92. https://doi.org/10.1007/s10646-012-0863-x (2012).

    CAS  Article  Google Scholar 

  • 23.

    Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558. https://doi.org/10.1098/rspb.2014.0558 (2014).

    Article  Google Scholar 

  • 24.

    Godfray, H. C. J. et al. A restatement of recent advances the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20151821. https://doi.org/10.1098/rspb.2015.1821 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6, 38957. https://doi.org/10.1038/srep38957 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508. https://doi.org/10.1038/srep16508 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Gill, R. J., Ramos-Rodríguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 https://doi.org/10.1038/nature11585 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).

    Article  Google Scholar 

  • 29.

    Feltham, H., Park, K. & Goulson, D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Stanley, D. A. & Raine, N. E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct. Ecol. 30, 1132–1139. https://doi.org/10.1111/1365-2435.12644 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449. https://doi.org/10.1111/1365-2664.12689 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Muth, F. & Leonard, A. S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 9, 4764. https://doi.org/10.1038/s41598-019-39701-5 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Baron, G. L., Jansen, V. A. A., Brown, M. J. F. & Raine, N. E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Wu-Smart, J. & Spivak, M. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environ. Entomol. 47, 55–62. https://doi.org/10.1093/ee/nvx175 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 36.

    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 37.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 571, 77–80. https://doi.org/10.1038/nature14420 (2015).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 39.

    Switzer, C. M. & Combes, S. A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25, 1150–1159. https://doi.org/10.1007/s10646-016-1669-z (2016).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Jin, N., Klein, S., Leimig, F., Bischoff, G. & Menzel, R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218, 2821–2825. https://doi.org/10.1242/jeb.123612 (2015).

    Article  PubMed  Google Scholar 

  • 42.

    Sandrock, C. et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 16, 119–128. https://doi.org/10.1111/afe.12041 (2014).

    Article  Google Scholar 

  • 43.

    Anderson, N. L. & Harmon-Threatt, A. N. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9, 3724. https://doi.org/10.1038/s41598-019-40031-9 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees: Biology, Evolution, Conservation (Princeton University Press, Princeton, 2019).

  • 45.

    Wheelock, M. J., Rey, K. P. & O’Neal, M. E. Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ. Entomol. 4, 1099–1106. https://doi.org/10.1093/ee/nvw1087 (2016).

    Article  Google Scholar 

  • 46.

    USDA. Attractiveness of agricultural crops to pollinating bees for the collection of nectar and/or pollen. Retrieved from https://www.ars.usda.gov/ARSUserFiles/OPMP/Attractiveness%20of%20Agriculture%20Crops%20to%20Pollinating%20Bees%20Report-FINAL_Web%20Version_Jan%203_2018.pdf (2017).

  • 47.

    OMAFRA. Vegetable Crop Protection Guide, 82–83. Government of Ontario (2014).

  • 48.

    Leza, M., Watrous, K. M., Bratu, J. & Woodard, S. H. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. B Biol. Sci. 285, 20180761. https://doi.org/10.1098/rspb.2018.0761 (2018).

    CAS  Article  Google Scholar 

  • 49.

    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B Biol. Sci. 284, 20170123. https://doi.org/10.1098/rspb.2017.0123 (2017).

    CAS  Article  Google Scholar 

  • 50.

    Roulston, T. H. & Cane, J. H. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 73, 129–142. Retrieved from https://www.jstor.org/stable/25085957 (2000).

  • 51.

    Klostermeyer, E., Mech, S. J. & Rasmussen, W. Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548. Retrieved from https://www.jstor.org/stable/25082604 (1973).

  • 52.

    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33. https://doi.org/10.1007/s00265-005-0134-4 (2006).

    Article  Google Scholar 

  • 53.

    Bonmatin, J. M. et al. Environmental fate and exposure: Neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7 (2015).

    CAS  Article  Google Scholar 

  • 54.

    Hilton, M., Jarvis, T. & Ricketts, D. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Scott-Dupree, C. D., Conroy, L. & Harris, C. R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymenoptera: Megachildidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 102, 177–182. https://doi.org/10.1603/029.102.0125 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Stephen, W. P., Bohart, G. E. & Torchio, P. F. The biology and external morphology of bees with a synopsis of the genera of northwestern America. Corvallis: Oregon State University. Retrieved from https://www.jstor.org/stable/25082339 (1969).

  • 57.

    Seidelmann, K. & Ulbrich, K. M. Conditional sex allocation in the Red Mason bee Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347. https://doi.org/10.1007/s00265-009-0850-2 (2010).

    Article  Google Scholar 

  • 58.

    Dively, G. P. & Kamel, A. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. J. Agric. Food Chem. 60, 4449–4456. https://doi.org/10.1021/jf205393x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114. https://doi.org/10.1371/journal.pone.0039114 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).

    Article  Google Scholar 

  • 61.

    Wang, T. T. et al. Suppression of chlorantraniliprole sorption on biochar in soil–biochar systems. Bull. Environ. Contam. Toxicol. 95, 401–406. https://doi.org/10.1007/s00128-015-1541-5 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 62.

    Winsor, J. A., Davis, L. E. & Stephenson, A. G. The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am. Nat. 129, 643–656. https://doi.org/10.1086/284664 (1987).

    Article  Google Scholar 

  • 63.

    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588. https://doi.org/10.1093/aob/mcp076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    McGrady, C. M., Troyer, R. & Fleischer, S. J. Wild bee visitation rates exceed pollination thresholds in commercial Cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574. https://doi.org/10.1093/jee/toz295 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Pes, M. et al. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 15, e0229151–e0229151. https://doi.org/10.1371/journal.pone.0229151 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Dinter, A., Brugger, K. E., Frost, N.-M. & Woodward, M. D. Chlorantraniliprole (Rynaxypyr): A novel DuPont insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. Julius-Kühn-Arch. 423, 84–96 (2009).

    Google Scholar 

  • 67.

    Gradish, A. E., Scott-Dupree, C. D., Shipp, L., Harris, C. R. & Ferguson, G. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag. Sci. 66, 142–146. https://doi.org/10.1002/ps.1846 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Tomé, H. V. V. et al. Reduced-risk insecticides in neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167, 186–196. https://doi.org/10.1111/aab.12217 (2015).

    CAS  Article  Google Scholar 

  • 69.

    Williams, J. R., Swale, D. R. & Anderson, T. D. Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, Apis mellifera (L.). Pest Manag. Sci. 76, 2582–2588. https://doi.org/10.1002/ps.5832 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Larson, J. L., Redmond, C. T. & Potter, D. A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 8, e66375. https://doi.org/10.1371/journal.pone.0066375 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Brugger, K. E. et al. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag. Sci. 66, 1075–1081. https://doi.org/10.1002/ps.1977 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Wang, J. et al. Molecular characterization of a ryanodine receptor gene in the rice leaf folder, Cnaphalocrocis medinalis (Guenée). PLoS ONE 7, e36623. https://doi.org/10.1371/journal.pone.0036623 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Willis, D. S. The pollination system of Cucurbita pepo and Peponapis pruinosa in southern Ontario. MSc Thesis. University of Guelph, Guelph, Ontario, Canada (1991).

  • 74.

    Kiernan, K. Insights into using the GLIMMIX procedure to model categorical outcomes with random effects. SAS Institute Inc. Retrieved from https://blogs.sas.com/con60tent/iml/2019/04/03/g-matrix-is-not-positive-definite.html (2018).


  • Source: Ecology - nature.com

    The catalyzing potential of J-WAFS seed grants

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities