in

Premating barriers in young sympatric snail species

  • 1.

    Mayr, E. Ecological factors in speciation. Evolution https://doi.org/10.1111/j.1558-5646.1947.tb02723.x (1947).

    Article  Google Scholar 

  • 2.

    Coyne, J. A. & Orr, H. A. Speciation Vol. 38 (Sinauer Associates, Sunderland MA, 2004).

    Google Scholar 

  • 3.

    Rosenblum, E. B. et al. Goldilocks meets Santa Rosalia: An ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39, 255–261. https://doi.org/10.1007/s11692-012-9171-x (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press, Columbia, 1937).

    Google Scholar 

  • 5.

    Edmands, S. Does parental divergence predict reproductive compatibility?. Trends Ecol. Evol. 17, 520–527. https://doi.org/10.1016/S0169-5347(02)02585-5 (2002).

    Article  Google Scholar 

  • 6.

    Turissini, D. A., McGirr, J. A., Patel, S. S., David, J. R. & Matute, D. R. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 35, 312–334. https://doi.org/10.1093/molbev/msx271 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719. https://doi.org/10.1111/j.0014-3820.2005.tb01747.x (2005).

    Article  PubMed  Google Scholar 

  • 8.

    Crespi, B. J. Causes of assortative mating in arthropods. Anim. Behav. 38, 980–1000. https://doi.org/10.1016/S0003-3472(89)80138-1 (1989).

    Article  Google Scholar 

  • 9.

    Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140. https://doi.org/10.1111/j.1365-294X.2011.05350.x (2011).

    Article  PubMed  Google Scholar 

  • 10.

    Servedio, M. R. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol. Appl. 9, 91–102. https://doi.org/10.1111/eva.12296 (2016).

    Article  PubMed  Google Scholar 

  • 11.

    Merot, C., Salazar, C., Merrill, R. M., Jiggins, C. D. & Joron, M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170335. https://doi.org/10.1098/rspb.2017.0335 (2017).

    Article  Google Scholar 

  • 12.

    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20. https://doi.org/10.1086/694889 (2018).

    Article  PubMed  Google Scholar 

  • 13.

    Janicke, T., Marie-Orleach, L., Aubier, T. G., Perrier, C. & Morrow, E. H. Assortative mating in animals and its role for speciation. Am. Nat. 194, 865–875. https://doi.org/10.1086/705825 (2019).

    Article  PubMed  Google Scholar 

  • 14.

    Richards, E. J., Servedio, M. R. & Martin, C. H. Searching for sympatric speciation in the genomic era. BioEssays 41, 1900047. https://doi.org/10.1002/bies.201900047 (2019).

    Article  Google Scholar 

  • 15.

    Jennings, J. H., Snook, R. R. & Hoikkala, A. Reproductive isolation among allopatric Drosophila montana populations. Evolution 68, 3095–3108. https://doi.org/10.1111/evo.12535 (2014).

    Article  PubMed  Google Scholar 

  • 16.

    Alipaz, J. A., Wu, C. & Karr, T. L. Gametic incompatibilities between races of Drosophila melanogaster. Proc. R. Soc. Lond. B https://doi.org/10.1098/rspb.2000.1420 (2001).

    Article  Google Scholar 

  • 17.

    McQuaid, C. D. & Dower, K. M. Enhancement of habitat heterogeneity and species richness on rocky shores inundated by sand. Oecologia 84, 142–144. https://doi.org/10.1007/BF00665608 (1990).

    ADS  Article  PubMed  Google Scholar 

  • 18.

    Archambault, P. & Bourget, E. Scales of coastal heterogeneity and benthic intertidal species richness, diversity and abundance. Mar. Ecol. Prog. Ser. 136, 111–121. https://doi.org/10.3354/meps136111 (1996).

    ADS  Article  Google Scholar 

  • 19.

    de Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947. https://doi.org/10.1038/35016066 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 20.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).

    Article  Google Scholar 

  • 21.

    Williams, S. T. & Reid, D. G. Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58, 2227–2251. https://doi.org/10.1111/j.0014-3820.2004.tb01600.x (2004).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Frey, M. A. The relative importance of geography and ecology in species diversification: evidence from a tropical marine intertidal snail (Nerita). J. Biogeogr. 37, 1515–1528. https://doi.org/10.1111/j.1365-2699.2010.02283.x (2010).

    Article  Google Scholar 

  • 23.

    Pereyra, R. T., Bergström, L., Kautsky, L. & Johannesson, K. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol. Biol. 9, 70. https://doi.org/10.1186/1471-2148-9-70 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Cánovas, F. G., Mota, C. F., Serrão, E. A. & Pearson, G. A. Driving south: A multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol. Biol. 11, 371. https://doi.org/10.1186/1471-2148-11-371 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Coyer, J. A. et al. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol. Phylogenet. Evol. 58, 283–296. https://doi.org/10.1016/j.ympev.2010.11.015 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Robinson, J. D. & Dillon, R. T. Genetic divergence among sympatric populations of three species of oyster drills (Urosalpinx) in Cedar Key Florida. Bull. Mar. Sci. 82, 19–31 (2008).

    Google Scholar 

  • 27.

    Wares, J. P. Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J. Crustac. Biol. 21, 1007–1013. https://doi.org/10.1163/20021975-99990193 (2001).

    Article  Google Scholar 

  • 28.

    Maltseva, A. L. et al. Microhabitat distribution, shell shape, and metabolomes in sympatric populations of closely related species of the genus Littorina (Neritrema) in two sites in the Norwegian and Barents Sea. PeerJ https://doi.org/10.1594/PANGAEA.923735 (2021).

    Article  Google Scholar 

  • 29.

    Pickles, A. & Grahame, J. Mate choice in divergent morphs of the gastropod mollusc Littorina saxatilis (Olivi): speciation in action?. Anim. Behav. 58, 181–184. https://doi.org/10.1006/anbe.1999.1115 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Erlandsson, J. Do reproductive strategy and breeding season influence the presence of mate recognition in the intertidal snail Littorina?. Invertebr. Reprod. Dev. 41, 53–60. https://doi.org/10.1080/07924259.2002.9652735 (2002).

    Article  Google Scholar 

  • 31.

    Johannesson, K. et al. Male discrimination of female mucous trails permits assortative mating in a marine snail species. Evolution 62, 3178–3184. https://doi.org/10.2307/25483552 (2008).

    Article  PubMed  Google Scholar 

  • 32.

    Ng, T. P. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Molluscan Stud. 82, 213–215. https://doi.org/10.1093/mollus/eyv035 (2016).

    Article  Google Scholar 

  • 33.

    Reid, D. G. Systematics and evolution of Littorina. vol. 164 (The Ray Society, 1996).

  • 34.

    Granovitch, A. I., Mikhailova, N. A., Znamenskaya, O. & Petrova, Y. A. Species complex of mollusks of the genus Littorina (Gastropoda, Prosobranchia) from the eastern Murman coast. Zool. Z. 83, 1305–1316 (2004) (In Russian).

    Google Scholar 

  • 35.

    Reid, D. G., Dyal, P. & Williams, S. T. A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool. Scr. 41, 125–136. https://doi.org/10.1111/j.1463-6409.2011.00505.x (2012).

    Article  Google Scholar 

  • 36.

    Granovitch, A. I., Maximovich, A. N., Avanesyan, A. V., Starunova, Z. I. & Mikhailova, N. A. Micro-spatial distribution of two sibling periwinkle species across the intertidal indicates hybrdization. Genetica 141, 293–301. https://doi.org/10.1007/s10709-013-9728-3 (2013).

    Article  PubMed  Google Scholar 

  • 37.

    Raffaelli, D. G. Observations of the copulatory behavior of Littorina rudis Maton and Littorina nigrolineata Gray (Gastropoda: Prosobranchia). Veliger 20, 75–77. https://doi.org/10.1007/BF00028082 (1977).

    Article  Google Scholar 

  • 38.

    Saur, M. Mate discrimination in Littorina littorea (L.) and L. saxatilis (Olivi) (Mollusca:Prosobranchia). Hydrobiologia 193, 261–270. https://doi.org/10.1007/BF00028082 (1990).

    Article  Google Scholar 

  • 39.

    Erlandsson, J. & Johannesson, K. Sexual selection on female size in a marine snail, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 181, 145–157. https://doi.org/10.1016/0022-0981(94)90125-2 (1994).

    Article  Google Scholar 

  • 40.

    Johannesson, K., Rolán-Alvarez, E. & Ekendahl, A. Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution 49, 1180–1190. https://doi.org/10.1111/j.1558-5646.1995.tb04445.x (1995).

    Article  PubMed  Google Scholar 

  • 41.

    Rolán-Alvarez, E., Zapata, C. & Alvarez, G. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75, 17–25. https://doi.org/10.1038/hdy.1995.99 (1995).

    Article  Google Scholar 

  • 42.

    Erlandsson, J. & Rolán-Alvarez, E. Sexual selection and assortative mating by size and their roles in the maintenance of a polymorphism in Swedish Littorina saxatilis populations. Hydrobiologia 378, 59–69. https://doi.org/10.1023/A:1003277202763 (1998).

    Article  Google Scholar 

  • 43.

    Rolán-Alvarez, E., Erlandsson, J., Johannesson, K. & Cruz, R. Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J. Evol. Biol. 12, 879–890. https://doi.org/10.1046/j.1420-9101.1999.00086.x (1999).

    Article  Google Scholar 

  • 44.

    Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005. https://doi.org/10.1371/journal.pone.0012005 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Ng, T. P. T., Davies, M. S., Stafford, R. & Williams, G. A. Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim. Behav. 82, 459–465. https://doi.org/10.1016/j.anbehav.2011.05.017 (2011).

    Article  Google Scholar 

  • 46.

    Saltin, S. H. Mate Choice and Its Evolutionary Consequences in Intertidal Snails (Littorina spp.). (Thesis for the degree of Doctor of Philosophy). Gothenburg, Sweden: University of Gothenburg. (2013).

  • 47.

    Estévez, D. et al. A novel method to estimate the spatial scale of mate choice in the wild. Behav. Ecol. Sociobiol. 72, 195. https://doi.org/10.1007/s00265-018-2622-3 (2018).

    Article  Google Scholar 

  • 48.

    Carvajal-Rodríguez, A. Multi-model inference of non-random mating from an information theoretic approach. Theor. Popul. Biol. 131, 38–53. https://doi.org/10.1016/j.tpb.2019.11.002 (2020).

    Article  PubMed  MATH  Google Scholar 

  • 49.

    Perini, S., Rafajlović, M., Westram, A. M., Johannesson, K. & Butlin, R. K. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution 74, 1482–1497. https://doi.org/10.1111/evo.14027 (2020).

    Article  PubMed  Google Scholar 

  • 50.

    Hollander, J., Lindegarth, M. & Johannesson, K. Local adaptation but not geographical separation promotes assortative mating in a snail. Anim. Behav. 70, 1209–1219. https://doi.org/10.1016/j.anbehav.2005.03.014 (2005).

    Article  Google Scholar 

  • 51.

    Merrell, D. J. Measurement of sexual isolation and selective mating. Evolution https://doi.org/10.2307/2405599 (1950).

    ADS  Article  Google Scholar 

  • 52.

    Rolán-Alvarez, E. & Caballero, A. Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54, 30–36. https://doi.org/10.1111/j.0014-3820.2000.tb00004.x (2000).

    Article  PubMed  Google Scholar 

  • 53.

    Ter Braak, C. J. F. Partial canonical correspondence analysis. In Classification and Related Methods of data Analysis: Proceedings of the First Conference of the International Federation of Classification Societies (IFCS), Technical University of Aachen, FRG, 29 June-1 July 1987 551–558 (Elsevier, 1988).

  • 54.

    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 55.

    Hannaford Ellis, C. J. Patterns of reproduction in four Littorina species. J. Molluscan Stud. 49, 98–106. https://doi.org/10.1093/oxfordjournals.mollus.a065711 (1983).

    Article  Google Scholar 

  • 56.

    Sokolova, I. M. Influence of trematodes on the demography of Littorina saxatilis (Gastropoda: Prosobranchia: Littorinidae) in the White Sea. Dis. Aquat. Organ. 21, 91–101. https://doi.org/10.3354/dao021091 (1995).

    Article  Google Scholar 

  • 57.

    Hull, S. L., Grahame, J. & Mill, P. J. Reproduction in four populations of brooding periwinkle (Littorina) at Ravenscar, North Yorkshire: Adaptation to the local environment?. J. Mar. Biol. Assoc. 79, 891–898. https://doi.org/10.1017/S0025315499001058 (1999).

    Article  Google Scholar 

  • 58.

    Ganzha, E. V., Granovitch, A. I., Petrova, Y. A. & Mikhailova, N. A. Hystological analysis of penial glands of Littorina mollusks. Vestn. -Peterbg. Univ. 3, 40–46 (2006) (In Russian).

    Google Scholar 

  • 59.

    Granovitch, A. I., Loskutova, Z. I., Gracheva, Y. A. & Mikhailova, N. A. Morphometric comparison of the copulatory organ in mollusks of ‘saxatilis’ species complex (Caenogastropoda: Littorinidae): problems of identification of species and species status. Zool. Z. 87, 1425–1436 (2008).

    Google Scholar 

  • 60.

    Mikhailova, N. A., Gracheva, Y. A. & Granovitch, A. I. Analysis of the interspecific mating frequency in the copulating pairs of the marine gastropods genus Littorina in “saxatilis” complex. Vestn. St Petersburg State Univ. 3, 5–9 (2008) (In Russian).

    Google Scholar 

  • 61.

    Mikhailova, N. A., Gracheva, Y. A., Backeljau, T. & Granovitch, A. I. A potential species-specific molecular marker suggests interspecific hybridization between sibling species Littorina arcana and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica 137, 333. https://doi.org/10.1007/s10709-009-9397-4 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Reid, D. G. Barnacle-dwelling ecotypes of three British Littorina species and the status of Littorina neglecta Bean. J. Molluscan Stud. 59, 51–62. https://doi.org/10.1093/mollus/59.1.51 (1993).

    Article  Google Scholar 

  • 63.

    Warwick, T., Knight, A. & Ward, R. Hybridisation in the Littorina saxatilis species complex (Prosobranchia: Mollusca). Hydrobiologia 193, 109–116. https://doi.org/10.1007/BF00028070 (1990).

    Article  Google Scholar 

  • 64.

    Stankowski, S. et al. The evolution of strong reproductive isolation between sympatric intertidal snails. Philos. Trans. R. Soc. B 375, 20190545. https://doi.org/10.1098/rstb.2019.0545 (2020).

    CAS  Article  Google Scholar 

  • 65.

    Rolán-Alvarez, E. et al. The scale-of-choice effect and how estimates of assortative mating in the wild can be biased due to heterogeneous samples. Evolution 69, 1845–1857. https://doi.org/10.1111/evo.12691 (2015).

    Article  PubMed  Google Scholar 

  • 66.

    Ng, T. P. T., Williams, G. A., Davies, M. S., Stafford, R. & Rolán-Alvarez, E. Sampling scale can cause bias in positive assortative mating estimates: Evidence from two intertidal snails. Biol. J. Linn. Soc. 119, 414–419. https://doi.org/10.1111/bij.12839 (2016).

    Article  Google Scholar 

  • 67.

    Mirkin, B. Mathematical Classification and Clustering (Springer Science & Business Media, Berlin, 1996).

    Google Scholar 

  • 68.

    Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850. https://doi.org/10.2307/2284239 (1971).

    Article  Google Scholar 

  • 69.

    Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720. https://doi.org/10.1093/bioinformatics/btv428 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    R Core Team. R: A language and environment for statistical computing. Version 3.6.0. (R Foundation for Statistical Computing, 2019).

  • 71.

    RStudio Team. RStudio: Integrated Development Environment for R. (2019).

  • 72.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer-Verlag, New York, 2011).

    Google Scholar 

  • 73.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5–5. (2019).

  • 74.

    Bateman, A. J. Analysis of data on sexual isolation. Evolution https://doi.org/10.1111/j.1558-5646.1949.tb00017.x (1949).

    Article  PubMed  Google Scholar 

  • 75.

    Pérez-Figueroa, A., Caballero, A. & Rolán-Alvarez, E. Comparing the estimation properties of different statistics for measuring sexual isolation from mating frequencies. Biol. J. Linn. Soc. 85, 307–318. https://doi.org/10.1111/j.1095-8312.2005.00491.x (2005).

    Article  Google Scholar 

  • 76.

    Wheeler, B. & Torchiano, M. lmPerm: Permutation Tests for Linear Models. R Package Version 2.1–0. (2016).

  • 77.

    Maxwell, S. E., Delaney, H. D. & Kelley, K. Designing Experiments and Analyzing Data: A model Comparison Perspective (Routledge, London, 2017).

    Google Scholar 

  • 78.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

    Google Scholar 

  • 79.

    Struhsaker, J. W. Breeding, spawning, spawning periodicity and early development in the Hawaiian Littorina: L. pintado (Wood), L. picta Philippi and L. scabra (Linné). J. Molluscan Stud. 37, 137–166. https://doi.org/10.1093/oxfordjournals.mollus.a064985 (1966).

    Article  Google Scholar 

  • 80.

    Kemppainen, P., Panova, M., Hollander, J. & Johannesson, K. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J. Evol. Biol. 22, 2000–2011. https://doi.org/10.1111/j.1420-9101.2009.01810.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 81.

    Carvalho, J. et al. De novo isolation of 17 microsatellite loci for flat periwinkles (Littorina fabalis and L. obtusata) and their application for species discrimination and hybridization studies. J. Molluscan Stud. 81, 421–425. https://doi.org/10.1093/mollus/eyv014 (2015).

    Article  Google Scholar 

  • 82.

    Costa, D. et al. Hybridization patterns between two marine snails, Littorina fabalis and L. obtusata. Ecol. Evol. 10, 1158–1179. https://doi.org/10.1002/ece3.5943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Carvalho, J., Sotelo, G., Galindo, J. & Faria, R. Genetic characterization of flat periwinkles (Littorinidae) from the Iberian Peninsula reveals interspecific hybridization and different degrees of differentiation. Biol. J. Linn. Soc. 118, 503–519. https://doi.org/10.1111/bij.12762 (2016).

    Article  Google Scholar 

  • 84.

    Maltseva, A. L. et al. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 8, e8546. https://doi.org/10.7717/peerj.8546 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Ng, T. P. et al. The causal relationship between sexual selection and sexual size dimorphism in marine gastropods. Anim. Behav. 148, 53–62. https://doi.org/10.1016/j.anbehav.2018.12.005 (2019).

    Article  Google Scholar 

  • 86.

    Tatarenkov, A. & Johannesson, K. Evidence of a reproductive barrier between two forms of the marine periwinkle Littorina fabalis (Gastropoda). Biol. J. Linn. Soc. 63, 349–365. https://doi.org/10.1111/j.1095-8312.1998.tb01522.x (1998).

    Article  Google Scholar 

  • 87.

    Carvalho, J. G. M. Study on the Diversification of Flat Periwinkles (Littorina fabalis and L. obtusata): Insights from Genetics and Geometric Morphometrics. Doctoral Dissertation (2014).

  • 88.

    Lobov, A. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. LOSP: A newly identified sperm protein from Littorina obtusata. J. Molluscan Stud. 81, 512–515. https://doi.org/10.1093/mollus/eyv010 (2015).

    Article  Google Scholar 

  • 89.

    Lobov, A. A. et al. LOSP: A putative marker of parasperm lineage in male reproductive system of the prosobranch mollusk Littorina obtusata. J. Exp. Zool. B 330, 193–201. https://doi.org/10.1002/jez.b.22803 (2018).

    CAS  Article  Google Scholar 

  • 90.

    Buckland-Nicks, J. A., Healy, J. M., Jamieson, B. G. M. & O’Leary, S. Paraspermatogenesis in Littoraria (Palustorina) articulata, with reference to other Littorinidae (Littorinoidea, Caenogastropoda). Invertebr. Biol. 119, 254–264. https://doi.org/10.1111/j.1744-7410.2000.tb00012.x (2000).

    Article  Google Scholar 

  • 91.

    Lobov, A. Gamete interaction proteins as factors of reproductive isolation of cryptic species of the genus Littorina Férussac, 1822. Thesis for the degree of Candidate of Biological Sciences. St.-Petersburg State University. https://doi.org/10.13140/RG.2.2.16769.68968. (2020).

  • 92.

    Ng, T. P. et al. Snails and their trails: the multiple functions of trail-following in gastropods. Biol. Rev. 88, 683–700. https://doi.org/10.1111/brv.12023 (2013).

    Article  PubMed  Google Scholar 

  • 93.

    Erlandsson, J. & Kostylev, V. Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season. Mar. Biol. 122, 87–94. https://doi.org/10.1007/BF00349281 (1995).

    Article  Google Scholar 

  • 94.

    Rolán-Alvarez, E. et al. Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Mol. Ecol. 13, 3415–3424. https://doi.org/10.1111/j.1365-294X.2004.02330.x (2004).

    CAS  Article  PubMed  Google Scholar 

  • 95.

    Grahame, J. W., Wilding, C. S. & Butlin, R. K. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60, 268–278. https://doi.org/10.1111/j.0014-3820.2006.tb01105.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 96.

    Panova, M., Hollander, J. & Johannesson, K. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol. Ecol. 15, 4021–4031. https://doi.org/10.1111/j.1365-294X.2006.03067.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 97.

    Maltseva, A. L. et al. Measuring physiological similarity of closely related littorinid species: A proteomic insight. Mar. Ecol. Prog. Ser. 552, 177–193. https://doi.org/10.3354/meps11770 (2016).

    ADS  CAS  Article  Google Scholar 

  • 98.

    Ward, R. D., Warwick, T. & Knight, A. J. Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia: Mollusca). Heredity 57, 233–241. https://doi.org/10.1038/hdy.1986.113 (1986).

    CAS  Article  Google Scholar 

  • 99.

    Dopman, E. B., Robbins, P. S. & Seaman, A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evol. Int. J. Org. Evol. 64, 881–902. https://doi.org/10.1111/j.1558-5646.2009.00883.x (2010).

    Article  Google Scholar 

  • 100.

    Weissing, F. J., Edelaar, P. & Van Doorn, G. S. Adaptive speciation theory: A conceptual review. Behav. Ecol. Sociobiol. 65, 461–480. https://doi.org/10.1007/s00265-010-1125-7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 101.

    Lobov, A., Maltseva, A., Mikhailova, N. & Granovitch, A. The molecular mechanisms of gametic incompatibility in invertebrates. Acta Nat. 11, 4–15 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT