Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).
Google Scholar
Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding changing planet. Science 347, 1259855 (2015).
Google Scholar
Muscat, A., de Olde, E. M., de Boer, I. J. M. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Sec. 25, 100330 (2020).
Google Scholar
Befort, N. Going beyond definitions to understand tensions within the bioeconomy: the contribution of sociotechnical regimes to contested fields. Technol. Forecast. Soc. Change 153, 119923 (2020).
Google Scholar
Jørgensen, S. E. & Nielsen, S. N. Application of ecological engineering principles in agriculture. Ecol. Eng. 7, 373–381 (1996).
Google Scholar
Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain (PBL Netherlands Environmental Assessment Agency, 2016).
Van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Ripoll-Bosch, R. & de Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).
Google Scholar
Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K. & Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 77, 98–113 (2018).
Google Scholar
Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).
van den Bos Verma, M., de Vreede, L., Achterbosch, T. & Rutten, M. M. Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste. PLoS ONE 15, e0228369 (2020).
Google Scholar
Obesity and Overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 10 April 2020).
Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Brit. Med. J. 365, l1949 (2019).
Google Scholar
Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Brit. Med. J. 365, l1451 (2019).
Google Scholar
Daystar, J., Chapman, L., Moore, M., Pires, S. & Golden, J. Quantifying apparel consumer use behavior in six countries: addressing a data need in life cycle assessment modeling. J. Text. Apparel Technol. Manag. 11, 1–25 (2019).
Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).
Google Scholar
Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).
Google Scholar
Garnett, T. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503 (2009).
Google Scholar
Goodland, R. Environmental sustainability in agriculture: diet matters. Ecol. Econ. 23, 189–200 (1997).
Google Scholar
Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).
Google Scholar
Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).
Google Scholar
Zhou, S. et al. Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. 29, 711–733 (2019).
Google Scholar
Haberl, H. & Geissler, S. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16, 111–121 (2000).
Google Scholar
Suominen, T., Kunttu, J., Jasinevičius, G., Tuomasjukka, D. & Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 32, 588–597 (2017).
Google Scholar
Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).
Google Scholar
Max-Neef, M. in Real-Life Economics (eds Ekins, P. & Max-Neef, M.) Ch. 7 (Routledge, 1992).
Doyal, L. & Gough, I. A Theory of Human Need (Macmillan, 1991).
Bos-Brouwers, H., Langelaan, B. & Sanders, J. Chances for biomass. Wageningen University UR https://edepot.wur.nl/248866 (2012).
Sandin, G. & Peters, G. M. Environmental impact of textile reuse and recycling – a review. J. Clean. Prod. 184, 353–365 (2018).
Google Scholar
Korhonen, J., Honkasalo, A. & Seppälä, J. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018).
Google Scholar
Castro, M. B. G., Remmerswaal, J. A. M., Brezet, J. C. & Reuter, M. A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 52, 219–233 (2007).
Google Scholar
Bergen, S. D., Bolton, S. M. & Fridley, J. L. Design principles for ecological engineering. Ecol. Eng. 18, 201–210 (2001).
Google Scholar
Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).
Google Scholar
Grandell, L. & Höök, M. Assessing rare metal availability challenges for solar energy technologies. Sustainability 7, 11818–11837 (2015).
Google Scholar
Kovacic, Z., Strand, R. & Völker, T. The Circular Economy in Europe (Routledge, 2019).
Dammer, L. & Essel, R. Quo Vadis, Cascading Use of Biomass? (nova Institute for Ecology and Innovation, 2015).
Cascading Use of Biomass: Opportunities and Obstacles in EU Policies 2013–2016 (Birdlife Europe & European Environmental Bureau, 2014).
Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy: a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).
Google Scholar
Termeer, C. J. A. M. & Metze, T. A. P. More than peanuts: transformation towards a circular economy through a small-wins governance framework. J. Clean. Prod. 240, 118272 (2019).
Google Scholar
Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).
Google Scholar
de Boer, I. J. M. & Van Ittersum, M. K. Circularity in Agricultural Production (Wageningen University & Research, 2018); https://edepot.wur.nl/470625
Van Eijk, F. Barriers & Drivers Towards a Circular Economy (Acceleratio, 2015); https://www.circulairondernemen.nl/uploads/e00e8643951aef8adde612123e824493.pdf
Teigiserova, D. A., Hamelin, L. & Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 149, 413–426 (2019).
Google Scholar
Gifford, R. & Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141–157 (2014).
Google Scholar
Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).
Google Scholar
Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).
Google Scholar
Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).
Google Scholar
Rothgerber, H. Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol. Men Masculin. 14, 363–375 (2013).
Google Scholar
Shove, E., Watson, M. & Spurling, N. Conceptualizing connections: energy demand, infrastructures and social practices. Eur. J. Soc. Theory 18, 274–287 (2015).
Google Scholar
Barnes, S. J. Out of sight, out of mind: plastic waste exports, psychological distance and consumer plastic purchasing. Glob. Environ. Change 58, 101943 (2019).
Google Scholar
Richter, B. Knowledge and perception of food waste among German consumers. J. Clean. Prod. 166, 641–648 (2017).
Google Scholar
Schanes, K., Dobernig, K. & Gözet, B. Food waste matters: a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).
Google Scholar
Aschemann-Witzel, J., de Hooge, I., Amani, P., Bech-Larsen, T. & Oostindjer, M. Consumer-related food waste: causes and potential for action. Sustainability 7, 6457–6477 (2015).
Google Scholar
Priefer, C., Jörissen, J. & Bräutigam, K. R. Food waste prevention in Europe: a cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 109, 155–165 (2016).
Google Scholar
Ölander, F. & Thøgersen, J. Informing versus nudging in environmental policy. J. Consum. Policy 37, 341–356 (2014).
Google Scholar
Söderholm, P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resour. Conserv. Recycl. 55, 911–922 (2011).
Google Scholar
Growth Within: A Circular Economy Vision for a Competitive Europe (Ellen Macarthur Foundation, 2015); https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf
Spierling, S., Venkatachalam, V., Behnsen, H., Herrmann, C. & Endres, H. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways (Springer, 2019).
Van Zanten, H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).
Google Scholar
Odegard, I., Croezen, H. & Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-based Economy-Making Better Choices for Use of Biomass Residues, By-products and Wastes (CE Delft, 2012).
Szarka, N., Wolfbauer, J. & Bezama, A. A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Manage. Res. 36, 332–341 (2018).
Google Scholar
Koppelmaki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).
Google Scholar
Mayer, A. L. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).
Google Scholar
Mayer, A., Schaffartzik, A., Haas, W. & Rojas-Sepúlveda, A. Patterns of Global Biomass Trade: Implications for Food Sovereignty and Socio-Environmental Conflicts (EJOLT, 2015).
Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).
Google Scholar
O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).
Google Scholar
Source: Ecology - nature.com