in

Pteropods make thinner shells in the upwelling region of the California Current Ecosystem

  • 1.

    Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS  Article  Google Scholar 

  • 3.

    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).

    CAS  Article  Google Scholar 

  • 9.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    ADS  Article  Google Scholar 

  • 10.

    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885 (2012).

    ADS  Article  CAS  Google Scholar 

  • 14.

    Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B Biol. Sci. 281, 20140123 (2014).

    Article  CAS  Google Scholar 

  • 15.

    Manno, C. et al. Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Sci. Rev. 169, 132–145 (2017).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Lischka, S., Büdenbender, J., Boxhammer, T. & Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences 8, 919–932 (2011).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Bednaršek, N. et al. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  • 18.

    Comeau, S. et al. Impact of aragonite saturation state changes on migratory pteropods. Proc. R. Soc. B Biol. Sci. 279, 732–738 (2011).

    Article  Google Scholar 

  • 19.

    Moya, A. et al. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Glob. Change Biol. 22, 3888–3900 (2016).

    ADS  Article  Google Scholar 

  • 20.

    Maas, A., Lawson, G. L., Bergan, A. J. & Tarrant, A. M. Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. J. Exp. Biol. 221, 164400 (2018).

    Article  Google Scholar 

  • 21.

    Johnson, K. M. & Hofman, G. E. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. Mar. Genom. 28, 25–28 (2016).

    Article  Google Scholar 

  • 22.

    Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Bednaršek, N. et al. El Niño-related thermal stress coupled with ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018).

    Article  Google Scholar 

  • 24.

    Peck, V. L., Tarling, G. A., Manno, C., Harper, E. M. & Tynan, E. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep-Sea Res. II 127, 53–56 (2016).

    Article  Google Scholar 

  • 25.

    Peck, V. L., Oakes, R. L., Harper, E. M., Manno, C. & Tarling, G. A. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nat. Commun. 9, 264 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Howes, E. L., Eagle, R. A., Gattuso, J.-P. & Bijma, J. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change. PLoS ONE 1, 1–23 (2017).

    Google Scholar 

  • 27.

    Oakes, R. L. & Sessa, J. A. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 7, 1975–1990 (2020).

    ADS  Article  Google Scholar 

  • 28.

    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Alin, S. R., et al. Dissolved inorganic carbon, total alkalinity, pH on total scale, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412). Version 1.1. NOAA National Centers for Environmental Information dataset (2017). https://doi.org/10.7289/V5V40SHG.

  • 30.

    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Wang, K., Hunt, B. P. V., Liang, C., Pauly, D. & Pakhomov, E. A. Reassessment of the life cycle of the pteropod Limacina helicina from a high resolution interannual time series in the temperate North Pacific. ICES J. Mar. Sci. 74, 1906–1920 (2017).

    Article  Google Scholar 

  • 32.

    Shimizu, K. et al. Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. J. Mollus. Stud. 84, 30–37 (2017).

    Article  Google Scholar 

  • 33.

    Sromek, L., Lasota, R. & Wolowicz, M. Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina Antarctica and Arctic Limacina helicina. Mar. Ecol. Prog. Ser. 525, 143–152 (2015).

    ADS  Article  Google Scholar 

  • 34.

    Hunt, B. et al. Poles apart: the ‘bipolar’ pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 5, e9835 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Bednaršek, N. et al. Systematic review and meta-analysis towards synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming. Front. Mar. Sci. 6, 227 (2019).

    Article  Google Scholar 

  • 36.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Legaard, K. R. & Thomas, A. C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res. 111, C06032 (2006).

    ADS  Article  Google Scholar 

  • 38.

    Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).

    ADS  Article  Google Scholar 

  • 39.

    Maas, A. E., Elder, L. E., Dierssen, H. M. & Seibel, B. A. Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity. Mar. Ecol. Prog. Ser. 441, 129–139 (2011).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 1–6 (2016).

    Article  CAS  Google Scholar 

  • 41.

    Thomas, A. C. & Strub, P. T. Interannual variability in phytoplankton pigment distribution during the spring transition along the west-coast of North America. J. Geophys. Res. 94, 18095–18117 (1989).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Bednaršek, N. & Ohman, M. D. Changes in pteropod vertical distribution, abundance and species richness in the California Current System due to ocean acidification. Mar. Ecol. Prog. Ser. 523, 93–103 (2015).

    ADS  Article  CAS  Google Scholar 

  • 43.

    Lalli, C. M. & Gilmer, R. W. Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks (Stanford University Press, Stanford, 1989).

    Google Scholar 

  • 44.

    Seibel, B. A., Dymowska, A. & Rosenthal, J. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs. Integr. Comp. Biol. 47, 880–891 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Checa, A. G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 5, 535 (2018).

    Article  Google Scholar 

  • 46.

    Marin, F., Le Roy, N. & Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 4, 1099–1125 (2012).

    Article  Google Scholar 

  • 47.

    Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: Confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33, 458–468 (2019).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Mackas, D. L. & Galbraith, M. D. Pteropod time-series from the NE Pacific. ICES J. Mar. Sci. 69, 448–459 (2012).

    Article  Google Scholar 

  • 51.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    CAS  Article  Google Scholar 

  • 52.

    Kerney, M. P. & Cameron, R. A. D. A Field Guide to the Land Snails of Britain and North-West Europe (Collins, London, 1979).

    Google Scholar 

  • 53.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 54.

    Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5-2 (2018).

  • 55.

    Wall-Palmer, D. et al. Biogeography and genetic diversity of the atlantid heteropods. Progr. Oceanogr. 160, 1–25 (2018).

    ADS  Article  Google Scholar 

  • 56.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed  Article  Google Scholar 

  • 57.

    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–2187 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web