in

Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño

  • 1.

    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS  Article  Google Scholar 

  • 2.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5, 1022–1023 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).

    Article  Google Scholar 

  • 8.

    Arroyo-Rodríguez, V. et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. Camb. Philos. Soc. 92, 326–340 (2017).

    PubMed  Article  Google Scholar 

  • 9.

    Collins, C. D. et al. Fragmentation affects plant community composition over time. Ecography 40, 119–130 (2017).

    Article  Google Scholar 

  • 10.

    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6 eaax8574 (2020).

  • 11.

    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 15531 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).

    ADS  Article  Google Scholar 

  • 15.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. https://doi.org/10.1111/nph.15027@10.1111/(ISSN)1469-8137.DroughtImpactsonTropicalForests (2018).

  • 16.

    Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Riutta, T. et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang. Biol. 24, 2913–2928 (2018).

    ADS  PubMed  Article  Google Scholar 

  • 18.

    Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. N. Phytol. 221, 1853–1865 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Swinfield, T. et al. Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Glob. Chang. Biol. 26, 989–1002 (2020).

    ADS  PubMed  Article  Google Scholar 

  • 20.

    Jotan, P., Maycock, C. R., Burslem, D., Berhaman, A. & Both, S. Comparative vessel traits of macaranga gigantea and vatica dulitensis from Malaysian Borneo. J. Trop. Sci. 32, 25–34 (2020).

    Google Scholar 

  • 21.

    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article  Google Scholar 

  • 22.

    Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Wolfe, B. T., Sperry, J. S. & Kursar, T. A. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. N. Phytol. 212, 1007–1018 (2016).

    Article  Google Scholar 

  • 24.

    Slik, J. W. F. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141, 114–120 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Itoh, A. et al. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol. Res. 18, 307–320 (2003).

    Article  Google Scholar 

  • 27.

    Stovall, A. E. L., Shugart, H. H. & Yang, X. Reply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’. Nat. Commun. 11, 3401 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Maréchaux, I. et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 29, 1268–1277 (2015).

    Article  Google Scholar 

  • 29.

    Cosme, L. H. M., Schietti, J., Costa, F. R. C. & Oliveira, R. S. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. N. Phytol. 215, 113–125 (2017).

    Article  Google Scholar 

  • 30.

    Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15040 (2020).

  • 31.

    Luke, S. H. et al. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article  Google Scholar 

  • 32.

    Padfield, R. et al. Co-Producing a Research Agenda for Sustainable Palm Oil. https://doi.org/10.3389/ffgc.2019.00013 (2019).

  • 33.

    Zhao, K. et al. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 204, 883–897 (2018).

    ADS  Article  Google Scholar 

  • 34.

    Simonson, W., Ruiz-Benito, P., Valladares, F. & Coomes, D. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences 13, 961–973 (2016).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Leitold, V. et al. El Niño drought increased canopy turnover in Amazon forests. N. Phytol. 219, 959–971 (2018).

    CAS  Article  Google Scholar 

  • 36.

    Moura, Y. Mde et al. Carbon dynamics in a human-modified tropical forest: a case study using multi-temporal LiDAR data. Remote Sens. 12, 430 (2020).

    ADS  Article  Google Scholar 

  • 37.

    Simonson, W., Allen, H. & Coomes, D. Effect of tree phenology on LiDAR measurement of mediterranean forest structure. Remote Sens. 10, 659 (2018).

    ADS  Article  Google Scholar 

  • 38.

    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).

    ADS  Article  Google Scholar 

  • 40.

    Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).

    Article  Google Scholar 

  • 41.

    Burton, C., Rifai, S. & Malhi, Y. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences373, 1760 (2018).

    Article  Google Scholar 

  • 42.

    Ordway, E. M. & Asner, G. P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA 117, 7863–7870 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 44.

    Sevanto, S. Phloem transport and drought. J. Exp. Bot. 65, 1751–1759 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).

    ADS  Article  Google Scholar 

  • 46.

    Woodgate, W. et al. Quantifying the impact of woody material on leaf area index estimation from hemispherical photography using 3D canopy simulations. Agric. Meteorol. 226-227, 1–12 (2016).

    Article  Google Scholar 

  • 47.

    Nunes, M. H. et al. Changes in leaf functional traits of rainforest canopy trees associated with an El Niño event in Borneo. Environ. Res. Lett. 14, 085005 (2019).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA 114, 2640–2644 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Marvin, D. C. & Asner, G. P. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environ. Res. Lett. 11, 094027 (2016).

    ADS  Article  CAS  Google Scholar 

  • 51.

    Roussel, J.-R., Caspersen, J., Béland, M., Thomas, S. & Achim, A. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 198, 1–16 (2017).

    ADS  Article  Google Scholar 

  • 52.

    Sist, P. & Nguyen-Thé, N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996). Ecol. Manag. 165, 85–103 (2002).

    Article  Google Scholar 

  • 53.

    Rutishauser, E. et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 25, R787–R788 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Giambelluca, T. W., Ziegler, A. D., Nullet, M. A., Truong, D. M. & Tran, L. T. Transpiration in a small tropical forest patch. Agric. Meteorol. 117, 1–22 (2003).

    Article  Google Scholar 

  • 55.

    Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8, e58093 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Laurance, W. F. & Curran, T. J. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 33, 399–408 (2008).

    Article  Google Scholar 

  • 57.

    Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 24, 5243–5258 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).

    Article  Google Scholar 

  • 59.

    Muscarella, R., Kolyaie, S., Morton, D. C., Zimmerman, J. K. & Uriarte, M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 108, 145–159 (2020).

    Article  Google Scholar 

  • 60.

    Werner, F. A. & Homeier, J. Is tropical montane forest heterogeneity promoted by a resource‐driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct. Ecol. 29, 430–440 (2015).

    Article  Google Scholar 

  • 61.

    Gonzalez‐Akre, E. et al. Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere 7, G04014 (2016).

    Article  Google Scholar 

  • 62.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Williamson, J. et al. Riparian Buffers Act as Microclimatic Refugia in Oil Palm Landscapes. https://doi.org/10.17863/CAM.57796 (2020).

  • 64.

    Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M. & Yoo, K. Using hilltop curvature to derive the spatial distribution of erosion rates: hilltop curvature predicts erosion rates. J. Geophys. Res117, F2 (2012).

    Google Scholar 

  • 65.

    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3292–3302 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Pfeifer, M. et al. Mapping the structure of Borneo’s tropical forests across a degradation gradient. Remote Sens. Environ. 176, 84–97 (2016).

    ADS  Article  Google Scholar 

  • 68.

    Reynolds, G., Payne, J., Sinun, W., Mosigil, G. & Walsh, R. P. D. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3168–3176 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Clarke, A. Principles of thermal ecology: temperature, energy, and life. Oxford Scholarship Online https://doi.org/10.1093/oso/9780199551668.001.0001 (2017).

  • 70.

    Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 108, 1046–1053 (1980).

    ADS  Article  Google Scholar 

  • 71.

    Asner, G. P. et al. Carnegie airborne observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 124, 454–465 (2012).

    ADS  Article  Google Scholar 

  • 72.

    Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences, 15, 3811–3830 (2018).

    ADS  Article  Google Scholar 

  • 73.

    Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T. & Hussin, Y. A. Generating pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens. 80, 863–872 (2014).

    Article  Google Scholar 

  • 74.

    Asner, G. P. & Mascaro, J. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 140, 614–624 (2014).

    ADS  Article  Google Scholar 

  • 75.

    Pearson, T. R. H., Brown, S. & Casarim, F. M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 9, 034017 (2014).

    ADS  Article  CAS  Google Scholar 

  • 76.

    Gobakken, T. G. & Næsset, E. N. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res. https://doi.org/10.1139/X07-219 (2008).

  • 77.

    Gray, C. L., Slade, E. M., Mann, D. J. & Lewis, O. T. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecol. Evol. 4, 1049–1060 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Metcalfe, P., Beven, K. & Freer, J. Dynamic TOPMODEL: a new implementation in R and its sensitivity to time and space steps. Environ. Model. Softw. 72, 155–172 (2015).

    Article  Google Scholar 

  • 79.

    Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño Dry Season. J. Trop. Ecol. 20, 51–72 (2004).

    Article  Google Scholar 

  • 80.

    H’edl, R. et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea J. Biodivers. Evolut. Biogeogr. Plants 54, 124–130 (2009).

    Article  Google Scholar 

  • 81.

    Kent, R., Lindsell, J. A., Laurin, G. V., Valentini, R. & Coomes, D. A. Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sens. 7, 8348–8367 (2015).

    ADS  Article  Google Scholar 

  • 82.

    Gonsamo, A., Walter, J.-M. N. & Pellikka, P. Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can. J. Res. 40, 1588–1603 (2010).

    Article  Google Scholar 

  • 83.

    Kalacska, M. E. R., Sanchez-Azofeifa, G. A., Calvo-Alvarado, J. C., Rivard, B. & Quesada, M. Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests1. Biotropica 37, 486–496 (2005).

    Article  Google Scholar 

  • 84.

    Thimonier, A., Sedivy, I. & Schleppi, P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur. J. Res. 129, 543–562 (2010).

    Article  Google Scholar 

  • 85.

    Chen, J. M. & Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 33, 777–787 (1995).

    ADS  Article  Google Scholar 

  • 86.

    Schleppi, P., Conedera, M., Sedivy, I. & Thimonier, A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. Meteorol. 144, 236–242 (2007).

    Article  Google Scholar 

  • 87.

    Harmon, M. E., Whigham, D. F., Sexton, J. & Olmsted, I. Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica 27, 305–316 (1995).

    Article  Google Scholar 

  • 88.

    Team, R. C. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing, Vienna, Austria. 2017). Available online: www.r-project.org (accessed 14 Febuary 2019) (2018).

  • 89.

    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Wedeux, B. et al. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15108 (2020).


  • Source: Ecology - nature.com

    Valuing wetlands

    3 Questions: Claude Grunitzky MBA '12 on launching TRUE Africa University