in

Reply to: Old-growth forest carbon sinks overestimated

  • 1.

    Gundersen, P. Old-growth forest carbon sinks overestimated. Nature https://doi.org/10.1038/s41586-021-03266-z (2021).

  • 2.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Yang, Y., Luo, Y. & Finzi, A. C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol. 190, 977–989 (2011).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Houlton, B. Z. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 62, 58–62 (2018).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2006).

    Article 

    Google Scholar 

  • 9.

    Clark, D. A. et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).

    Article 

    Google Scholar 

  • 10.

    Wharton, S. & Falk, M. Climate indices strongly influence old-growth forest carbon exchange. Environ. Res. Lett. 11, 044016 (2016).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Campioli, M. et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 7, 13717 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Luyssaert, S. et al. Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob. Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003377 (2009).

  • 13.

    Nord-Larsen, T., Vesterdal, L., Bentsen, N. S. & Larsen, J. B. Ecosystem carbon stocks and their temporal resilience in a semi-natural beech-dominated forest. For. Ecol. Manage. 447, 67–76 (2019).

    Article 

    Google Scholar 

  • 14.

    Kwon, H., Law, B. E., Thomas, C. K. & Johnson, B. G. The influence of hydrological variability on inherent water use efficiency in forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest U.S. Agric. For. Meteorol. 249, 488–500 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Law, B. E. & Berner, L. T. NACP TERRA-PNW: Forest Plant Traits, NPP, Biomass, and Soil Properties 1999–2014 https://doi.org/10.3334/ORNLDAAC/1292 (ORNL DAAC, 2015).

  • 16.

    Falk, M., Wharton, S., Schroeder, M., Ustin, S. L. & Paw, U. K. T. Flux partitioning in an old-growth forest: seasonal and interannual dynamics. Tree Physiol. 28, 509–520 (2008).

    CAS 
    Article 

    Google Scholar 

  • 17.

    FLUXNET2015 Dataset: Data Processing https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/ (Fluxnet, accessed 25 April 2020).

  • 18.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 3, 792–796 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Study reveals plunge in lithium-ion battery costs

    Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species