Sanchez-Gonzalez, A. & Lopez-Mata, L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers. Distrib. 11, 567–575 (2005).
Dai, L., Feng, Y., Luo, G., Li, Y. & Xu, W. The relationship between soil, climate and forest development in the mid-mountain zone of the Sangong River watershed in the northern Tianshan Mountains, China. J. Arid Land 7, 63–72 (2014).
Baiping, Z., Ya, T. & Senguo, M. O. Digital spectrum and analysis of altitudinal belts in the Tianshan Mountains. J. Mt. Res. 1, 18–28 (2004).
Pretzsch, H., Biber, P., Schutze, G., Uhl, E. & Rotzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).
Li, W. J. et al. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China. J. Mt. Sci. Engl. 13, 1411–1422 (2016).
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 7, 154–158 (2017).
Sun, J., Qin, X. J. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20 (2016).
Windmaisser, T. & Reisch, C. Long-term study of an alpine grassland: Local constancy in times of global change. Alpine Bot. 123, 1–6 (2013).
Mahdavi, P., Akhani, H. & Van der Maarel, E. Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot. 48, 7–22 (2013).
Rumpf, S. B. et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293 (2019).
Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M. & Pauli, H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447–459 (2018).
Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
Kueppers, L. M. et al. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob. Change Biol. 23, 2383–2395 (2017).
Sedmakova, D. et al. Growth-climate responses indicate shifts in the competitive ability of European beech and Norway spruce under recent climate warming in East-Central Europe. Dendrochronologia 54, 37–48 (2019).
Fadrique, B. & Feeley, K. J. Commentary: Novel competitors shape species’ responses to climate change. Front. Ecol. Evol. 4, 33 (2016).
Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).
Li, B. F., Chen, Y. N., Chen, Z. S., Xiong, H. G. & Lian, L. S. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmos. Res. 167, 275–284 (2016).
Peng, D. D. & Zhou, T. J. Why was the arid and semiarid northwest China getting wetter in the recent decades?. J. Geophys. Res. Atmos. 122, 9060–9075 (2017).
Hong, C. P. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci. U.S.A. 116, 17193–17200 (2019).
Xu, C. C., Chen, Y. N., Chen, Y. P., Zhao, R. F. & Ding, H. Responses of surface runoff to climate change and human activities in the arid region of Central Asia: A case study in the Tarim River Basin, China. Environ Manag. 51, 926–938 (2013).
Deng, H. J., Chen, Y. N., Wang, H. J. & Zhang, S. H. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Change 135, 28–37 (2015).
Luo, M. et al. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 676, 613–626 (2019).
Yue, X. Y., Liu, G., Chen, J. M. & Zhou, C. Y. Synergistic regulation of the interdecadal variability in summer precipitation over the Tianshan mountains by sea surface temperature anomalies in the high-latitude Northwest Atlantic Ocean and the Mediterranean Sea. Atmos. Res. 233, UNSP 104717 (2020).
Zhang, H. K. K. & Roy, D. P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 197, 15–34 (2017).
Hu, Z. Y., Dietz, A. & Kuenzer, C. The potential of retrieving snow line dynamics from Landsat during the end of the ablation seasons between 1982 and 2017 in European mountains. Int. J. Appl. Earth Obs. 78, 138–148 (2019).
Geng, L. Y., Che, T., Wang, X. F. & Wang, H. B. Detecting spatiotemporal changes in vegetation with the BFAST model in the Qilian Mountain region during 2000–2017. Remote Sens. Basel 11, 103 (2019).
Pham, H. T., Marshall, L., Johnson, F. & Sharma, A. A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sens. Environ. 210, 229–241 (2018).
Piloyan, A. & Milan, K. Semi-automated classification of landform elements in Armenia based on SRTM DEM using K-means unsupervised classification. Quaest. Geogr. 36, 93–103 (2017).
Gonzalez-Moradas, M. D. R. & Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 237, 111509 (2020).
Florinsky, I., Skrypitsyna, T. & Luschikova, O. Comparative accuracy of the AW3D30DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sens. Lett. 9, 706–714 (2018).
Xu, M., Kang, S. C., Wu, H. & Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 203, 141–163 (2018).
Wu, P., Ding, Y. H., Liu, Y. J. & Li, X. C. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol. 39, 5241–5255 (2019).
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change. 4, 587–592 (2014).
Chen, Y. N., Li, W. H., Deng, H. J., Fang, G. H. & Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 6, 35458 (2016).
Source: Ecology - nature.com