in

Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell

  • 1.

    Dixon, T. & Pretorius, I. S. Drawing on the past to shape the future of synthetic yeast research. Int. J. Mol. Sci. 21, 7156 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 2.

    Dixon, T., Curach, N. & Pretorius, I. S. Bio-informational futures: the convergence of artificial intelligence and synthetic biology. EMBO Rep. 21, e50036 (2020a). 1–5.

    CAS  Article  Google Scholar 

  • 3.

    Dixon, T., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Layeghifard, M., Hwang, D. W. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 20, foz084 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Pretorius, I. S. & Boeke, J. D. Yeast 2.0 − Connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, foy032 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 8.

    Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Muller, E. E. L. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Syst. Biol. 8, 73–80 (2018).

    Article  Google Scholar 

  • 10.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 1, 15007 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 13.

    McCarty, N. S. & Ledesma-Amaro, R. Synthetic Biology tools to engineer microbial communities for Biotechnology. Trends Biotechnol. 37, 181–197 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 14.

    Peris, D. et al. Synthetic hybrids of six yeast species. Nat. Commun. 11, 2085 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Yi, X. & Dean, A. M. Adaptive landscapes in the age of synthetic biology. Mol. Biol. Evol. 36, 890–907 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Goel, A., Wortel, M. T., Molenaar, D. & Teusink, B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol. Lett. 34, 2147–2160 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    De Vrieze, J. & Verstraete, W. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ. Microbiol. 18, 2797–2809 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 18.

    Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Cao, H., Gibson, T., Bashan, A. & Liu, Y. Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. BioEssays 39, 1600188 (2016).

    Article  Google Scholar 

  • 21.

    Liu, Z. et al. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 00, 1–17 (2020).

    Google Scholar 

  • 22.

    Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Dini-Andreote, F. et al. Dynamics of bacterial community succession in a saltmarsh chronosequence: evidences for temporal niche partitioning. ISME J. 8, 1989–2001 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2, 16180 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Toju, H. et al. Scoring species for synthetic community design: Network analyses of functional core microbiomes. Front. Microbiol. 11, 1361 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245–257 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. Nat. Meth 11, 521–526 (2014).

    CAS  Article  Google Scholar 

  • 28.

    Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Coradini, A. L. V., Hull, C. B. & Ehrenreich, I. M. Building genomes to understand biology. Nat. Commun. 11, 6177 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Bartley, B. A. et al. Organizing genome engineering for the gigabase scale. Nat. Commun. 11, 689 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Lau, Y. H. et al. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. 45, 6971–6980 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125, 621–632 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Benders, G. A. et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38, 2558–2569 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9, 312–326 (1958).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 36.

    Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 38.

    Decoene, T., Peters, G., De Maeseneire, S. L. & De Mey, M. Toward predictable 5′UTRs in Saccharomyces cerevisiae: Development of a yUTR calculator. ACS Synth. Biol. 7, 622–634 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Weenink, T., van der Hilst, J., McKiernan, R. M. & Ellis, T. Design of RNA hairpin modules that predictably tune translation in yeast. Synth. Biol. 3, ysy019 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Kotopka, B. J. & Smolke, C. D. Model-driven generation of artificial yeast promoters. Nat. Commun. 11, 2113 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Curran, K. A. et al. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol. 4, 824–832 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    MacPherson, M. & Saka, Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth. Biol. 6, 130–138 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Morse, N. J., Gopal, M. R., Wagner, J. M. & Alper, H. S. Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086–2095 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Gräslund, S. et al. Structural Genomics Consortium: Protein production and purification. Nat. Methods 5, 135–146 (2008).

    PubMed  Article  Google Scholar 

  • 45.

    Lin, Y., Zou, X., Zheng, Y., Cai, Y. & Dai, J. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy. ACS Synth. Biol. 8, 2203–2211 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 47.

    Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Salinas, F. et al. Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. mBio 9, e00626–18 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Jin, J., Jia, B. & Yuan, Y. J. Yeast chromosomal engineering to improve industrially-relevant phenotypes. Curr. Opin. Biotechnol. 66, 165–170 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Lee, D., Lloyd, N. D. R., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Micro. Cell Fact. 15, 49 (2016).

    Article  CAS  Google Scholar 

  • 53.

    Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth. Biol. 2, ysw002 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).

    Article  Google Scholar 

  • 57.

    Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 1–29 (2017).

    Article  CAS  Google Scholar 

  • 58.

    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behaviour suggest contribution to regional wine characteristics. mBio 7, 1–12 (2016).

    Article  Google Scholar 

  • 59.

    Liu, D., Chen, Q., Zhang, P., Chen, D. & Howell, K. S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. mSphere 5, e00534–20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT