in

Sexual competition and kin recognition co-shape the traits of neighboring dioecious Diospyros morrisiana seedlings

  • 1.

    Karban, R. Plant behaviour and communication. Ecol. Lett. 11, 727–739 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Chen, B. J. W., During, H. J. & Anten, N. P. R. Detect the neighbor: Identity recognition at the root level in plants. Plant Sci. 195, 157–167 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Inderjit, Seastedt, T. R. et al. Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol. Invasions 10, 875–890 (2008).

    Article 

    Google Scholar 

  • 4.

    Yang, X., Li, L., Xu, Y. & Kong, C. Kin recognition in rice (Oryza sativa) lines. New Phytol 220, 567–578 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Kasperbauer, M. J. & Hunt, P. G. Shoot/root assimilate allocation and nodulation of vigna unguiculata seedlings as influenced by shoot light environment. Plant Soil 161, 97–101 (1994).

    Article 

    Google Scholar 

  • 6.

    Yu, P., Hochholdinger, F. & Li, C. Plasticity of lateral root branching in maize. Front. Plant Sci. 10, 363 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Fang, S. et al. Genotypic recognition and spatial responses by rice roots. Proc. Natl Acad. Sci. USA 110, 2670–2675 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Biedrzycki, M. L., Jilany, T. A., Dudley, S. A. & Bais, H. P. Root exudates mediate kin recognition in plants. Commun. Integr. Biol. 3, 28–35 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Bhatt, M. V., Khandelwal, A. & Dudley, S. A. Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs. N. Phytol. 189, 1135–1142 (2011).

    Article 

    Google Scholar 

  • 11.

    Mercer, C. A. & Eppley, S. M. Kin and sex recognition in a dioecious grass. Plant Ecol. 215, 845–852 (2014).

    Article 

    Google Scholar 

  • 12.

    Dong, T., Li, J., Liao, Y., Chen, B. J. W. & Xu, X. Root-mediated sex recognition in a dioecious tree. Sci. Rep. 7, 1–7 (2017).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Renner. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Lovett Doust, J., O’Brien, G. & Lovett Doust, L. Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). Am. J. Bot. 74, 40–46 (1987).

    Article 

    Google Scholar 

  • 15.

    Eppley, S. M. Females make tough neighbors: sex-specific competitive effects in seedlings of a dioecious grass. Oecologia 146, 549–554 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Graff, P., Rositano, F. & Aguiar, M. R. Changes in sex ratios of a dioecious grass with grazing intensity: the interplay between gender traits, neighbour interactions and spatial patterns. J. Ecol. 101, 1146–1157 (2013).

    Article 

    Google Scholar 

  • 17.

    Dudley, S. A. & File, A. L. Kin recognition in an annual plant. Biol. Lett. 3, 435–438 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Semchenko, M., Saar, S. & Lepik, A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. N. Phytol. 204, 631–637 (2014).

    Article 

    Google Scholar 

  • 19.

    Li, J., Xu, X. L. & Liu, Y. R. Kin recognition in plants with distinct lifestyles: implications of biomass and nutrient niches. Plant Growth Regul. 84, 333–339 (2018).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Lepik, A., Abakumova, M., Zobel, K. & Semchenko, M. Kin recognition is density-dependent and uncommon among temperate grassland plants. Funct. Ecol. 26, 1214–1220 (2012).

    Article 

    Google Scholar 

  • 21.

    Murphy, G. P. & Dudley, S. A. Kin recognition: Competition and cooperation in Impatiens (Balsaminaceae). Am. J. Bot. 96, 1990–1996 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 22.

    Rogers, S. R. & Eppley, S. M. Testing the interaction between inter-sexual competition and phosphorus availability in a dioecious gras. Botany 710, 704–710 (2012).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Bierzychudek, P. & Eckhart, V. Spatial segregation of the sexes of dioecious plants. Am. Nat. 132, 34–43 (1988).

    Article 

    Google Scholar 

  • 24.

    Mercer, C. A. Spatial segregation of the sexes in a salt marsh grass Distichlis spicata (Poaceae). Master Thesis, Portland State University, Portland, Oregon, USA. https://doi.org/10.15760/etd.173 (Portland State University, 2010).

  • 25.

    Hamilton, W. D. The genetical evolution of social behavior, I & II. J. Theor. Biol. 7, 1–52 (1964).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Haichar, Z. & Bernard, C. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Biedrzycki, M. L., Venkatachalam, L. & Bais, H. P. Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition. Plant Signal. Behav. 6, 1515–1524 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Zhu, S. et al. Effects of root exudates on the growth and development of male and female Morus alba seedlings. Plant Physiol. J. 52, 134–140 (2016).

    Google Scholar 

  • 29.

    Mercer, C. A. & Eppley, S. M. Inter-sexual competition in a dioecious grass. Oecologia 164, 657–664 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Herrera, C. M. Plant size, spacing patterns, and host-plant selection in Osyris Quadripartita, a hemiparasitic dioecious shrub. J. Ecol. 76, 995–1006 (1988).

    Article 

    Google Scholar 

  • 31.

    Yangxia, Z., Fengyun, L. E. I., Shuang, Q. I. U. & Shanmei, Z. Effects of fatty acid ester compounds on growth and physiological characteristics of water melon seedlings. J. Hunan Agric. Univ. Sci. 46, 297–302 (2020).

    Google Scholar 

  • 32.

    Huimin, L. I. et al. The special bacterial metabolites and allelopathic potentials in Casuarina equisetifolia woodland of different stand ages. Chin. J. Appl. Environ. Biol. 22, 808–814 (2016).

    Google Scholar 

  • 33.

    Zhang, Jhong, Sun, Hlong, Chen, Syang, Zeng, L. I. & Wang, Ttao Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 58, 1–9 (2017).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Zhou, T. et al. Effects of essential oil decanal on growth and transcriptome of the postharvest fungal pathogen Penicillium expansum. Postharvest Biol. Technol. 145, 203–212 (2018).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Varga, S. Effects of arbuscular mycorrhizas on reproductive traits in sexually dimorphic plants. J. Agric. Res. 8, 11–24 (2010).

    Google Scholar 

  • 36.

    Varga, S. Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis. N. Phytol. 199, 812–821 (2013).

    Article 

    Google Scholar 

  • 37.

    Varga, S., Vega-Frutis, R. & Kytöviita, M.-M. Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza in Antennaria dioica. Plant Biol. 19, 217–226 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Varga, S. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment. Am. J. Bot. 102, 358–366 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Bawa, K. S. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).

    Article 

    Google Scholar 

  • 40.

    Zheng, D.-S., Liu, X. & Li, Y. Cultivated plants originated in China. J. Plant Genet. Resour. 13, 1–10 (2012).

    Google Scholar 

  • 41.

    Fang, S., Yan, X. & Liao, H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J. 60, 1096–1108 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Akagi, T. et al. Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. J. Jpn. Soc. Hortic. Sci. 83, 214–221 (2014).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Badri, D. V. et al. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).

  • 45.

    Fiehn, O. et al. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 53, 691–704 (2008).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Lenth, R. V. Least-squares means: the {R} package {lsmeans}. J. Stat. Softw. 69, 1–33 (2016).

    Article 

    Google Scholar 

  • 47.

    Paine, C. E. T. et al. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3, 245–256 (2012).

    Article 

    Google Scholar 

  • 48.

    R Core Team. R: A Language and Environment for Statistical Computing (2017).


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans