in

Shallow seamounts represent speciation islands for circumglobal yellowtail Seriola lalandi

  • 1.

    Holland, K. N. & Grubbs, R. D. Fish visitors to seamounts: Tunas and billfish at seamounts. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. J. et al.) 89–201 (Blackwell Publishing, Oxford, 2007).

    Google Scholar 

  • 2.

    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (John Wiley & Sons, New York, 2008). .

    Google Scholar 

  • 3.

    Pazmiño, D. A. et al. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Berrisford, C. D. Biology and zoogeography of Vema Seamount: A report on the first biological collection made on the summit. Trans. R. Soc. S. Afr. 38, 387–398 (1969).

    Article  Google Scholar 

  • 5.

    Collette, B. B. & Parin, N. V. Shallow-water fishes of Walters Shoals Madagascar Ridge. Bull. Mar. Sci. 48, 1–22 (1991).

    Google Scholar 

  • 6.

    Baxter, J. L. A. study of the yellowtail Seriola dorsalis (Gill). State of California department of fish and game. Mol. Biol. Ecol. 110, 96 (1960).

    Google Scholar 

  • 7.

    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Size at maturity and seasonal changes in gonad activity of yellowtail kingfish (Seriola lalandi; Carangidae) in New South Wales, Australia, New Zealand. Mol. Biol. Ecol. 33, 457–468 (1999).

    Google Scholar 

  • 8.

    Shiraishi, T., Ohshimo, S. & Yukami, R. Age, growth and reproductive characteristics of gold striped amberjack Seriola lalandi in the waters off western Kyushu Japan. Mol. Biol. Ecol. 44, 117–127 (2010).

    CAS  Google Scholar 

  • 9.

    Miranda, I. T. & Peet, C. Farmed Yellowtail Seriola spp. Japan and Australia. Final Report, October 22, 2008 (2008)

  • 10.

    Griffiths, M. H. Long-trends in catch and effort of commercial linefish off South Africa’s Cape Province: Snapshots of the 20th century. S. Afr. J. Marine Sci. 22, 81–110 (2000).

    Article  Google Scholar 

  • 11.

    Kerwath and Wilke. Yellowtail (Seriola lalandi). In: Southern African Marine Linefish Species Profiles (ed. Mann BQ, Special Publication, Oceanographic Research Institute, Durban 9, 23–24, 2013).

  • 12.

    Penney, A. The southern Cape yellowtail fishery—a research perspective and preliminary results. Internal Report, Sea Fisheries Research Institute South Africa 08: 19 pp (1982)

  • 13.

    Wilke, C. G. & Griffiths, M. H. Movement patterns of offshore linefish based on tagging results. SANCOR Occ. Rep. 5, 98–107 (1999).

    Google Scholar 

  • 14.

    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): How useful are data from a cooperative tagging programme?. Mol. Biol. Ecol. 52, 179–192 (2001).

    Google Scholar 

  • 15.

    Holdsworth, J. C., McKenzie, J. R., Walsh, C., van der Straten, K.M. & Ó Maolagáin, C. Catch-at-age of yellowtail kingfish (Seriola lalandi) caught by recreational fishers in KIN 1, New Zealand. New Zealand Fisheries Assessment Report 2013/3. 31 p. (2013).

  • 16.

    Dunn, K. The diet, reproductive biology age and growth of yellowtail, Seriola lalandi, in South Africa. Unpublished MSc thesis, University of Cape Town (2014).

  • 17.

    Gilchrist, J. D. F. The development of the South African fishes Part-1. Mar. Investig. South Africa 2, 181–201 (1903).

    Google Scholar 

  • 18.

    Martinez-Takeshita, N. et al. A tale of three tails: Cryptic speciation in a globally distributed marine fish of the genus Seriola. Copeia 103, 357–368 (2015).

    Article  Google Scholar 

  • 19.

    Swart, B. L., Bester-van der Merwe, A. E., Kerwath, S. E. & Roodt-Wilding, R. Phylogeography of the pelagic fish Seriola lalandi at different scales: confirmation of interocean population structure and evaluation of southern African genetic diversity. Afr. J. Mar. Sci. 38, 513–524 (2016).

    Article  Google Scholar 

  • 20.

    Rogers, A. D. The biology of seamounts. Adv. Mar. Biol. 30, 304–360 (1994).

    Google Scholar 

  • 21.

    Samadi, S. et al. Seamount endemism questioned by the geographical distribution and population genetic structure of marine invertebrates. Mar. Biol. 149, 1463–1475 (2006).

    Article  Google Scholar 

  • 22.

    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Annu. Rev. Mar. Sci. 2, 253–278 (2010).

    ADS  Article  Google Scholar 

  • 23.

    Cho, W. & Shank, T. M. Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Mar. Ecol. 31, 121–143 (2010).

    ADS  Article  Google Scholar 

  • 24.

    Shank, T. M. Deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23, 108–122 (2010).

    Article  Google Scholar 

  • 25.

    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 275, 1803–1809 (2008).

    Google Scholar 

  • 26.

    Diggles, B. K. Import risk assessment: juvenile yellowtail kingfish (Seriola lalandi) from Spencer Gulf aquaculture, South Australia. Client Report No. WLG 2002/03. National Institute of Water and Atmospheric Research (NIWA) Ltd, Kilbirnie, Wellington, New Zealand (2002).

  • 27.

    Bang, N. D. Dynamic interpretations of a detailed Surface temperature chart of the Agulhas Current retroflexion and fragmentation area. S. Afr. Geogr. J. 52, 67–76 (1970).

    Article  Google Scholar 

  • 28.

    Lutjeharms, J. R. E. & Gordon, A. L. Shedding of an Agulhas Ring observed at sea. Nat. Lond. 325, 138–140 (1987).

    ADS  Article  Google Scholar 

  • 29.

    Duncombe Rae, C. M. Agulhas retroflection rings in the South Atlantic Ocean: An overview. S. Afr. J. Marine Sci. 11, 327–344 (1991).

    Article  Google Scholar 

  • 30.

    Lutjeharms, J. R. E. The exchange of water between the South Indian and the South Atlantic. In The South Atlantic: Present and Past Circulation (eds Wefer, G. et al.) 125–162 (Springer, Berlin, 1996).

    Google Scholar 

  • 31.

    Martin, A. P., Humphreys, R. & Palumbi, S. R. Population genetic-structure of the armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: Application of the polymerase chain reaction to fisheries problems. Can. J. Fish. Aquat. Sci. 49, 2386–2391 (1992).

    CAS  Article  Google Scholar 

  • 32.

    Hoarau, G. & Borsa, P. Extensive gene flow within sibling species in the deep-sea fish Beryx splendens. CR Acad. Sci. III Vie 323, 315–325 (2000).

    CAS  Article  Google Scholar 

  • 33.

    Smith, P. J. et al. Genetic and meristic variation in black and smooth oreos in the New Zealand EEZ. Mol. Biol. Ecol. 36, 737–750 (2002).

    CAS  Google Scholar 

  • 34.

    Levy-Hartmann, L., Roussel, V., Letourneur, Y. & Sellos, D. Y. Global and New Caledonian patterns of population genetic variation in the deep-sea splendid alfonsino, Beryx splendens, inferred from mtDNA. Genetica 139, 1349–1365 (2011).

    PubMed  Article  Google Scholar 

  • 35.

    Catarino, D., Stefanni, S. & Menezes, G. M. Size distribution and genetic diversity of the offshore rockfish (Pontinus kuhlii) from three Atlantic archipelagos and seamounts. Deep-Sea Res. Pt. II(98), 160–169 (2013).

    Article  Google Scholar 

  • 36.

    Varela, A. I., Ritchie, P. A. & Smith, P. J. Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fish. Res. 140, 83–90 (2013).

    Article  Google Scholar 

  • 37.

    Aboim, M. A., Menezes, G. M., Schlitt, T. & Rogers, A. D. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Mol. Ecol. 14, 1343–1354 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Stockley, B. M., Menezes, G., Pinho, M. R. & Rogers, A. D. Genetic population structure of the black-spot sea bream (Pagellus bogaraveo) from the NE Atlantic. Mar. Biol. 146, 793–804 (2005).

    CAS  Article  Google Scholar 

  • 39.

    Rogers, A. D., Morley, S., Fitzcharles, E., Jarvis, K. & Belchier, M. Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sectors of the Southern Ocean. Mar. Biol. 149, 915–924 (2006).

    Article  Google Scholar 

  • 40.

    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Progr. Oceanogr. 83(1–4), 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).

    ADS  Article  Google Scholar 

  • 41.

    Nepgen, C. S. Diet of predatory and reef fish in False Bay and possible effects of pelagic purse-seining on their food supply. Mol. Biol. Ecol. 16, 75–93 (1982).

    Google Scholar 

  • 42.

    Massias, A. & Becker, P. H. Nutritive value of food and growth in Common Tern Sterna hirundo chicks. Ornis Scand. 1, 187–194 (1990).

    Article  Google Scholar 

  • 43.

    Stearns, S. C. The Evolution of Life Histories 249 (Oxford University Press, New York, 1992).

    Google Scholar 

  • 44.

    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).

    PubMed  Article  Google Scholar 

  • 45.

    Shuter, B. J. et al. Optimal life histories and food web position: Linkages among somatic growth, reproductive investment, and mortality. Can. J. Fish. Aquat. Sci. 62, 738–746 (2005).

    Article  Google Scholar 

  • 46.

    Jensen, A. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53, 820–822 (1996).

    Article  Google Scholar 

  • 47.

    Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).

    Article  Google Scholar 

  • 48.

    Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).

    Article  Google Scholar 

  • 49.

    Heydorn, A. E. F. Research on the Vema Seamount. Afr. Ship. News Fish. Ind. Rev 12, 79–83 (1967).

    Google Scholar 

  • 50.

    Bergstad, Odd Aksel, Åge Sigurd Høines, Roberto Sarralde, G. Campanis, M. Gil, Fran Ramil, E. Maletzky, E. Mostarda, Larvika Singh, and M. A. António. “Bathymetry, substrate and fishing areas of Southeast Atlantic high-seas seamounts.” African J. of Marine Science 41, no. 1 (2019): 11–28.

  • 51.

    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mol. Biol. Ecol. 53, 307–318 (2002).

    Google Scholar 

  • 52.

    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • 53.

    Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).

    Google Scholar 

  • 54.

    Palero, F., González-Candelas, F. & Pascual, M. MICROSATELIGHT—Pipeline to expedite microsatellite analysis. J. Hered. 102, 247–249 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Van Oosterhout, C., Hutchison, W. F., Shipley, P. & Wills, D. P. M. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 56.

    Belkhir, K., Borsa, P., Goudet, J., Chikhi, L. & Bonhomme, F. GENETIX, logiciel sous Window TM pour la génétique des populations. Laboratoire Génome et Populations, Montpellier, France. (2000) http://kimura.univ-montp2.fr/genetix/

  • 57.

    Goudet, J. FSTAT, a Program to estimate and test gene diversities and fixation indices version 2.9.3. (2001). http://www.unil.ch/izea/softwares/fstat.html

  • 58.

    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. 6, 600–602 (2006).

    Article  Google Scholar 

  • 59.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  Google Scholar 

  • 60.

    Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–659 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed  Article  Google Scholar 

  • 63.

    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resourc. 11, 5–18 (2011).

    Article  Google Scholar 

  • 64.

    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).

    PubMed  Article  Google Scholar 

  • 65.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Peakall, R. & Smouse, P. E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).

    Article  Google Scholar 

  • 67.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. (2013)

  • 70.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS ONE 12(9), e0184481 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).

    Article  Google Scholar 

  • 73.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).

    Article  Google Scholar 

  • 76.

    Froese, B. R. Cube law, condition factor and weight—length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Brewing up a dirty-water remedy (and more) with kombucha-inspired biosensors

    Continuous versus discrete quantity discrimination in dune snail (Mollusca: Gastropoda) seeking thermal refuges