in

Simulations with Australian dragon lizards suggest movement-based signal effectiveness is dependent on display structure and environmental conditions

  • 1.

    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).

    Article 

    Google Scholar 

  • 2.

    Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 340, 215–225 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Fleishman, L. J. The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am. Nat. 139, S36–S61 (1992).

    Article 

    Google Scholar 

  • 4.

    Lythgoe, J. N. The Ecology of vision (Oxford University Press, 1979).

    Google Scholar 

  • 5.

    Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication 2nd edn. (Sinauer Associates, 1998).

    Google Scholar 

  • 6.

    Morton, E. S. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34 (1975).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. Lond. 41, 315–352 (1990).

    Article 

    Google Scholar 

  • 8.

    Wiley, R. H. & Richards, D. G. Adaptations for acoustic communication in birds: Sound transmission and signal detection. In Ecology and Evolution of Acoustic Communication in Birds (eds Kroodsma, D. E. & Miller, E. H.) 131–181 (Academic Press, 1983).

    Google Scholar 

  • 9.

    Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. USA 88, 2783–2787 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Peters, R. A., Clifford, C. W. G. & Evans, C. S. Measuring the structure of dynamic visual signals. Anim. Behav. 64, 131–146 (2002).

    Article 

    Google Scholar 

  • 11.

    Narins, P. M. Seismic communication in anuran amphibians. Bioscience 40, 268–274 (1990).

    Article 

    Google Scholar 

  • 12.

    Fleishman, L. & Persons, M. The influence of stimulus and background colour on signal visibility in the lizard Anolis cristatellus. J. Exp. Biol. 204, 1559–1575 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Brumm, H. & Slabbekoorn, H. Acoustic communication in noise. Adv. Study Behav. 35, 151–209 (2005).

    Article 

    Google Scholar 

  • 14.

    Peters, R. A., Hemmi, J. M. & Zeil, J. Signaling against the wind: modifying motion-signal structure in response to increased noise. Curr. Biol. 17, 1231–1234 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Ord, T. J. & Stamps, J. A. Alert signals enhance animal communication in “noisy” environments. Proc. Natl. Acad. Sci. USA 105, 18830–18835 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Komers, P. E. Behavioural plasticity in variable environments. Can. J. Zool. 75, 161–169 (1997).

    Article 

    Google Scholar 

  • 17.

    Ord, T. J., Charles, G. K., Palmer, M. & Stamps, J. A. Plasticity in social communication and its implications for the colonization of novel habitats. Behav. Ecol. 27b, 341–351 (2015).

    Google Scholar 

  • 18.

    Marten, K. & Marler, P. Sound transmission and its significance for animal vocalization. Behav. Ecol. Sociobiol. 2, 271–290 (1977).

    Article 

    Google Scholar 

  • 19.

    Ryan, M. J., Cocroft, R. B. & Wilczynski, W. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44, 1869–1872 (1990).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Leal, M. & Fleishman, L. J. Differences in visual signal design and detectability between allopatric populations of Anolis lizards. Am. Nat. 163, 26–39 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    McNett, G. D. & Cocroft, R. B. Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav. Ecol. 19, 650–656 (2008).

    Article 

    Google Scholar 

  • 22.

    Ferguson, G. W. Variation and evolution of the push-up displays of the side-blotched lizard genus Uta (Iguanidae). Syst. Zool. 20, 79–101 (1971).

    Article 

    Google Scholar 

  • 23.

    Martins, E. P., Bissell, A. N. & Morgan, K. K. Population differences in a lizard communicative display: evidence for rapid change in structure and function. Anim. Behav. 56, 1113–1119 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Martins, E. P. & Lamont, J. Estimating ancestral states of a communicative display: A comparative study of Cyclurarock iguanas. Anim. Behav. 55, 1685–1706 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Bloch, N. & Irschick, D. An analysis of inter-population divergence in visual display behavior of the green anole lizard (Anolis carolinensis). Ethology 112, 370–378 (2006).

    Article 

    Google Scholar 

  • 26.

    Barquero, M. D., Peters, R. & Whiting, M. Geographic variation in aggressive signalling behaviour of the Jacky dragon. Behav. Ecol. Sociobiol. 69, 1501–1510 (2015).

    Article 

    Google Scholar 

  • 27.

    Bian, X., Chandler, T., Laird, W., Pinilla, A. & Peters, R. Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour. Methods Ecol. Evol. 9, 544–559 (2018).

    Article 

    Google Scholar 

  • 28.

    Fleishman, L. J. Motion detection in the presence and absence of background motion in an Anolis lizard. J. Comp. Physiol. A 159, 711–720 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Fleishman, L. J. Sensory and environmental influences on display form in Anolis auratus, a grass anole from Panama. Behav. Ecol. Sociobiol. 22, 309–316 (1988).

    Google Scholar 

  • 30.

    Eckert, M. P. & Zeil, J. Towards an ecology of motion vision. In Motion Vision (eds Zanker, J. M. & Zeil, J.) 333–369 (Springer, 2001).

    Google Scholar 

  • 31.

    Peters, R. A. & Evans, C. S. Design of the Jacky dragon visual display: Signal and noise characteristics in a complex moving environment. J. Comp. Physiol. A 189, 447–459 (2003).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Peters, R. A. Noise in visual communication: Motion from wind-blown plants. In Animal Communication and Noise. Animal Signals and Communication (ed. Brumm, H.) 311–330 (Springer, 2013).

    Google Scholar 

  • 33.

    Ramos, J. A. & Peters, R. A. Motion-based signaling in sympatric species of Australian agamid lizards. J. Comp. Physiol. A 203, 661–671 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ramos, J. A. & Peters, R. A. Habitat-dependent variation in motion signal structure between allopatric populations of lizards. Anim. Behav. 126, 69–78 (2017).

    Article 

    Google Scholar 

  • 35.

    Ramos, J. A. & Peters, R. A. Quantifying ecological constraints on motion signaling. Front. Ecol. Evol. 5, 9 (2017).

    Article 

    Google Scholar 

  • 36.

    Bian, X., Chandler, T., Pinilla, A. & Peters, R. Now you see me, now you don’t: Environmental conditions, signaler behavior, and receiver response thresholds interact to determine the efficacy of a movement-based animal signal. Front. Ecol. Evol. 7, 130 (2019).

    Article 

    Google Scholar 

  • 37.

    Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Zeil, J. & Zanker, J. M. A glimpse into crabworld. Vis. Res. 37, 3417–3426 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Koch, C. & Ullman, S. Shifts in selective visual attention: Towards the underlying neural circuitry. in Matters of Intelligence. Conceptual Structures in Cognitie Neuroscience (ed. Vaina, L. M.) 115–142 (Springer, 1987).

  • 40.

    Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).

    Article 

    Google Scholar 

  • 41.

    Harel, J., Koch, C. & Perona, P. Graph-based visual saliency. Adv. Neural Inf. Proc. Sys. 19, 545–552 (2006).

    Google Scholar 

  • 42.

    Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, 1998).

    Google Scholar 

  • 43.

    Tatler, B. W., Hayhoe, M. M., Land, M. F. & Ballard, D. H. Eye guidance in natural vision: Reinterpreting salience. J. Vis. 11, 5 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Wilson, S. & Swan, G. A Complete Guide to Reptiles of Australia 2nd edn. (Reed New Holland, 2013).

    Google Scholar 

  • 45.

    Heatwole, H. & Firth, B. T. Voluntary maximum temperature of the jacky lizard, Amphibolurus muricatus. Copeia 1982, 824–829 (1982).

    Article 

    Google Scholar 

  • 46.

    Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Aust. Ecol. 25, 640–652 (2000).

    Article 

    Google Scholar 

  • 47.

    Ord, T. J. & Evans, C. S. Display rate and opponent assessment in the Jacky dragon (Amphibolurus muricatus): An experimental analysis. Behaviour 140, 1495–1508 (2003).

    Article 

    Google Scholar 

  • 48.

    Warner, D. A. & Shine, R. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc. R. Soc. Lond. B. Biol. Sci. 278, 256–265 (2010).

    Google Scholar 

  • 49.

    Carpenter, C. C., Badham, J. A. & Kimble, B. Behavior patterns of three species of Amphibolurus (Agamidae). Copeia 1970, 497–505 (1970).

    Article 

    Google Scholar 

  • 50.

    Peters, R. A. & Ord, T. J. Display response of the Jacky Dragon, Amphibolurus muricatus (Lacertilia : Agamidae), to intruders: A semi-Markovian process. Aust. Ecol. 28, 499–506 (2003).

    Article 

    Google Scholar 

  • 51.

    Peters, R. A. & Evans, C. S. Introductory tail-flick of the Jacky dragon visual display: Signal efficacy depends upon duration. J. Exp. Biol. 206, 4293–4307 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Carpenter, C. C. A comparison of the patterns of display of Urosaurus, Uta, and Streptosaurus. Herpetologica 18, 145–152 (1962).

    Google Scholar 

  • 53.

    Cogger, H. Reproductive cycles, fat body cycles and socio-sexual behaviour in the mallee dragon, Amphibolurus fordi (Lacertilia: Agamidae). Aust. J. Zool. 26, 653–672 (1978).

    Article 

    Google Scholar 

  • 54.

    Garcia, J. E., Rohr, D. & Dyer, A. G. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: The case of Australian Mallee dragons (Ctenophorus fordi). J. Exp. Biol. 216, 4290–4298 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Ramos, J. A. & Peters, R. A. Dragon wars: Movement-based signalling by Australian agamid lizards in relation to species ecology. Aust. Ecol. 41, 302–315 (2016).

    Article 

    Google Scholar 

  • 56.

    Gibbons, J. R. H. Comparative ecology and behaviour of lizards of the Amphibolurus decresii species complex. PhD dissertation, University of Adelaide, Adelaide, South Australia (1977).

  • 57.

    McLean, C. A., Moussalli, A., Sass, S. & Stuart-Fox, D. Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales. Rec. Aust. Mus. 65, 51–63 (2013).

    Article 

    Google Scholar 

  • 58.

    Osborne, L. Information content of male agonistic displays in the territorial tawny dragon (Ctenophorus decresii). J. Ethol. 23, 189–197 (2005).

    Article 

    Google Scholar 

  • 59.

    Gibbons, J. R. The hind leg pushup display of the Amphibolurus decresii species complex (Lacertilia: Agamidae). Copeia 1979, 29–40 (1979).

    Article 

    Google Scholar 

  • 60.

    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Akagi, Y. & Kitajima, K. Computer animation of swaying trees based on physical simulation. Comput. Graph. 30, 529–539 (2006).

    Article 

    Google Scholar 

  • 62.

    Itti, L., Dhavale, N. & Pighin, F. Realistic avatar eye and head animation using a neurobiological model of visual attention. In Proc. SPIE 48th Annual International Symposium on Optical Science and Technology Vol. 5200 (eds Bosacchi, B. et al.) 64–78 (SPIE Press, Bellingham, 2003).

    Google Scholar 

  • 63.

    Fleishman, L. J. & Pallus, A. C. Motion perception and visual signal design in Anolis lizards. Proc. R. Soc. B. 277, 3547–3554 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan

  • 65.

    R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • 66.

    Blamires, S. Circumduction and head bobbing in the agamid lizard Lophognathus temporalis. Herpetofauna 28, 51–52 (1998).

    Google Scholar 

  • 67.

    Carpenter, C. C. Aggression and social structure in iguanid lizards. In Lizard Ecology: A Symposium (ed. Milstead, W. W.) (University of Missouri Press Columbia, 1967).

    Google Scholar 

  • 68.

    Carpenter, C. Ritualistic social behaviors in lizards. in Behavior and Neurology of Lizards, An Interdisciplinary Colloquium, 253–267. (National Institute of Mental Health, 1978).

  • 69.

    Peters, R. A., Hemmi, J. & Zeil, J. Image motion environments: Background noise for movement-based animal signals. J. Comp. Physiol. A 194, 441–456 (2008).

    Article 

    Google Scholar 

  • 70.

    Hunter, M. L. & Krebs, J. R. Geographical variation in the song of the great tit (Parus major) in relation to ecological factors. J. Anim. Ecol 48, 759–785 (1979).

    Article 

    Google Scholar 

  • 71.

    Harmon, L. J., Kolbe, J. J., Cheverud, J. M. & Losos, J. B. Convergence and the multidimensional niche. Evolution 59, 409–421 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Fleishman, L. J. Sensory influences on physical design of a visual display. Anim. Behav. 36, 1420–1424 (1988).

    Article 

    Google Scholar 

  • 73.

    Ord, T. J., Peters, R. A., Clucas, B. & Stamps, J. A. Lizards speed up visual displays in noisy motion habitats. Proc. R. Soc. Lond. B. Biol. Sci. 274, 1057–1062 (2007).

    Google Scholar 

  • 74.

    Hasson, O. Pursuit-deterrent signals: Communication between prey and predator. Trends Ecol. Evol. 6, 325–329 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Hebets, E. A. & Uetz, G. W. Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim. Behav. 57, 865–872 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    How coal’s decline impacts county and school funding

    At MIT Energy Conference, experts zero in on legacy energy systems