in

Slow life history leaves endangered snake vulnerable to illegal collecting

  • 1.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 2.

    Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 3.

    Nijman, V. An overview of international wildlife trade from Southeast Asia. Biodivers. Conserv. 19, 1101–1114 (2010).

    Article  Google Scholar 

  • 4.

    TRAFFIC. Wildlife Trade Monitoring Network, Illegal Wildlife Trade. (2020).

  • 5.

    Rosen, G. E. & Smith, K. F. Summarizing the evidence on the international trade in illegal wildlife. EcoHealth 7, 24–32 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Wyler, L. & Sheikh, P. International illegal trade in wildlife: Threats and U.S. policy. (2008).

  • 7.

    Baker, S. E. et al. Rough trade: Animal welfare in the global wildlife trade. Bioscience 63, 928–938 (2013).

    Article  Google Scholar 

  • 8.

    Tingley, M. W., Harris, J. B. C., Hua, F., Wilcove, D. S. & Yong, D. L. The pet trade’s role in defaunation. Science 356, 916 (2017).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 9.

    Bush, E. R., Baker, S. E. & Macdonald, D. W. Global trade in exotic pets 2006–2012. Conserv. Biol. 28, 663–676 (2014).

    PubMed  Article  Google Scholar 

  • 10.

    Harris, J. B. C. et al. Measuring the impact of the pet trade on Indonesian birds. Conserv. Biol. 31, 394–405 (2017).

    PubMed  Article  Google Scholar 

  • 11.

    Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01399-y (2021).

    Article  PubMed  Google Scholar 

  • 12.

    Flecks, M. et al. Watching extinction happen: The dramatic population decline of the critically endangered Tanzanian Turquoise Dwarf Gecko, Lygodactylus williamsi. Salamandra 48, 12–20 (2012).

    Google Scholar 

  • 13.

    Natusch, D. J. D. & Lyons, J. A. Exploited for pets: The harvest and trade of amphibians and reptiles from Indonesian New Guinea. Biodivers. Conserv. 21, 2899–2911 (2012).

    Article  Google Scholar 

  • 14.

    Marshall, B. M., Strine, C. & Hughes, A. C. Thousands of reptile species threatened by under-regulated global trade. Nat. Commun. 11, 4738 (2020).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 15.

    Auliya, M. et al. Trade in live reptiles, its impact on wild populations, and the role of the European market. Biol. Conserv. 204, 103–119 (2016).

    Article  Google Scholar 

  • 16.

    Gibbon, J. W. et al. The global decline of reptiles, déjà vu amphibians. Bioscience 50, 653 (2000).

    Article  Google Scholar 

  • 17.

    Ngo, H. N., Nguyen, T. Q., Phan, T. Q., van Schingen, M. & Ziegler, T. A case study on trade in threatened tiger geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the Endangered G. catbaensis. Nat. Conserv. 33, 1–19 (2019).

    Article  Google Scholar 

  • 18.

    Mandimbihasina, A. R. et al. The illegal pet trade is driving Madagascar’s ploughshare tortoise to extinction. Oryx 54, 188–196 (2020).

    Article  Google Scholar 

  • 19.

    Stuart, B. L., Rhodin, A. G. J., Grismer, L. L. & Hansel, T. Scientific description can imperil species. Science 312, 1137b–1137b (2006).

    Article  Google Scholar 

  • 20.

    Alacs, E. & Georges, A. Wildlife across our borders: A review of the illegal trade in Australia. Aust. J. Forensic Sci. 40, 147–160 (2008).

    Article  Google Scholar 

  • 21.

    Vall-llosera, M. & Cassey, P. ‘Do you come from a land down under?’ Characteristics of the international trade in Australian endemic parrots. Biol. Conserv. 207, 38–46 (2017).

    Article  Google Scholar 

  • 22.

    Tingley, R. et al. Geographic and taxonomic patterns of extinction risk in Australian squamates. Biol. Conserv. 238, 108203 (2019).

    Article  Google Scholar 

  • 23.

    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).

    Article  Google Scholar 

  • 24.

    Natusch, D. J. D., Lyons, J. A., Mumpuni, Riyanto, A. & Shine, R. Jungle giants: Assessing sustainable harvesting in a difficult-to-survey species (Python reticulatus). PLoS One 11, e0158397 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Congdon, J. D. Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): Implications for conservation and management of long-lived organisms. Conserv. Biol. 7, 826–833 (1993).

    Article  Google Scholar 

  • 26.

    Congdon, J. D., Dunham, A. E. & Sels, R. C. V. L. Demographics of common snapping turtles (Chelydra serpentina): Implications for conservation and management of long-lived organisms. Am. Zool. 34, 397–408 (1994).

    Article  Google Scholar 

  • 27.

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).

    CAS  Article  Google Scholar 

  • 28.

    Chapple, D. G. et al. The Action Plan for Australian Lizards and Snakes 2017 (CSIRO Publishing, 2019).

    Google Scholar 

  • 29.

    Geyle, H. M. et al. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. https://doi.org/10.1071/PC20033 (2020).

    Article  Google Scholar 

  • 30.

    Webb, J. K., Harlow, P. S. & Pike, D. A. Australian reptiles and their conservation. In Austra l Ark: The State of Wildlife in Australia and New Zealand 354–381 (Cambridge University Press, 2015).

    Google Scholar 

  • 31.

    Webb, J. K., Brook, B. W. & Shine, R. Collectors endanger Australia’s most threatened snake, the broad-headed snake Hoplocephalus bungaroides. Oryx 36, 170–181 (2002).

    Article  Google Scholar 

  • 32.

    Webb, J. K., Brook, B. W. & Shine, R. What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecol. Res. 17, 59–67 (2002).

    Article  Google Scholar 

  • 33.

    Webb, J. K. & Shine, R. Ecological characteristics of a threatened snake species, Hoplocephalus bungaroides (Serpentes, Elapidae). Anim. Conserv. 1, 185–193 (1998).

    Article  Google Scholar 

  • 34.

    Burbidge, A. A. & Jenkins, R. W. G. Endangered Vertebrates of Australia and Its Island Territories (Australian National Parks and Wildlife Service, 1984).

    Google Scholar 

  • 35.

    Sumner, J., Webb, J. K., Shine, R. & Keogh, J. S. Molecular and morphological assessment of Australia’s most endangered snake, Hoplocephalus bungaroides, reveals two evolutionarily significant units for conservation. Conserv. Genet. 11, 747–758 (2010).

    Article  Google Scholar 

  • 36.

    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1251-1 (2020).

    Article  PubMed  Google Scholar 

  • 37.

    Webb, J. K. Ecology and conservation of the endangered broad-headed snake Hoplocephalus bungaroides in Morton National Park, Australia. In Strategies for Conservation Success in Herpetology (Society for the Study of Amphibians and Reptiles, 2020).

    Google Scholar 

  • 38.

    Shine, R. Arboreality in snakes: Ecology of the Australian elapid genus Hoplocephalus. Copeia 1983, 198 (1983).

    Article  Google Scholar 

  • 39.

    Webb, J. K., Brook, B. W. & Shine, R. Does foraging mode influence life history traits? A comparative study of growth, maturation and survival of two species of sympatric snakes from south-eastern Australia. Austral. Ecol. 28, 601–610 (2003).

    Article  Google Scholar 

  • 40.

    Webb, J. K. & Shine, R. Out on a limb: Conservation implications of tree-hollow use by a threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biol. Conserv. 81, 21–33 (1997).

    Article  Google Scholar 

  • 41.

    Dubey, S. et al. Genetic connectivity among populations of an endangered snake species from southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol. Evol. 1, 218–227 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, 120–139 (1999).

    Article  Google Scholar 

  • 43.

    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach (Springer, 1998).

    Google Scholar 

  • 44.

    Cooch, E. & White, G. Using MARK—A Gentle Introduction (Springer, 2001).

    Google Scholar 

  • 45.

    Sibly, R. M. & Hone, J. Population growth rate and its determinants: An overview. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1153–1170 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).

    Article  Google Scholar 

  • 47.

    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118 (2010).

    Article  Google Scholar 

  • 48.

    Lacy, R. C. & Pollak, J. P. Vortex: A Stochastic Simulation of the Extinction Process. Version 10.2.9. , Brookfield, Illinois, USA. (2017).

  • 49.

    Brook, B. W. et al. Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385–387 (2000).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 50.

    Naujokaitis-Lewis, I. R., Curtis, J. M. R., Arcese, P. & Rosenfeld, J. Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv. Biol. 23, 225–229 (2009).

    PubMed  Article  Google Scholar 

  • 51.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 52.

    Revelle, W. Psych: Procedures for Personality and Psychological Research. HttpsCRANR-Proj. (2019).

  • 53.

    Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81, 654–665 (2000).

    Article  Google Scholar 

  • 54.

    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article  Google Scholar 

  • 55.

    Carrete, M., Sánchez-Zapata, J. A., Benítez, J. R., Lobón, M. & Donázar, J. A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 142, 2954–2961 (2009).

    Article  Google Scholar 

  • 56.

    Hitchmough, R., Adams, L., Reardon, J. & Monks, J. Current challenges and future directions in lizard conservation in New Zealand. J. R. Soc. N. Z. 46, 29–39 (2016).

    Article  Google Scholar 

  • 57.

    Knox, C. D. Habitat requirements of the jewelled gecko (Naultinus gemmeus): Effects of grazing, predation and habitat fragmentation. Masters Thesis, University of Otago, Dunedin. (2010).

  • 58.

    Knox, C. D., Cree, A. & Seddon, P. J. Accurate identification of individual geckos (Naultinus gemmeus) through dorsal pattern differentiation. N. Z. J. Ecol. 37, 60–66 (2013).

    Google Scholar 

  • 59.

    Pike, D. A., Croak, B. M., Webb, J. K. & Shine, R. Subtle—but easily reversible—anthropogenic disturbance seriously degrades habitat quality for rock-dwelling reptiles. Anim. Conserv. 13, 411–418 (2010).

    Article  Google Scholar 

  • 60.

    Fleishman, E., Ray, C., Sjogren-Gulve, P., Boggs, C. L. & Murphy, D. D. Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv. Biol. 16, 706–716 (2002).

    Article  Google Scholar 

  • 61.

    Thomas, J. A. et al. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. Lond. B Biol. Sci. 268, 1791–1796 (2001).

    CAS  Article  Google Scholar 

  • 62.

    Verboom, J., Schotman, A., Opdam, P. & Metz, J. A. J. European nuthatch metapopulations in a fragmented agricultural landscape. Oikos 61, 149 (1991).

    Article  Google Scholar 

  • 63.

    Croak, B. M., Pike, D. A., Webb, J. K. & Shine, R. Habitat selection in a rocky landscape: Experimentally decoupling the influence of retreat site attributes from that of landscape features. PLoS One 7, e37982 (2012).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 64.

    Croak, B. M., Pike, D. A., Webb, J. K. & Shine, R. Using artificial rocks to restore nonrenewable shelter sites in human-degraded systems: Colonization by fauna. Restor. Ecol. 18, 428–438 (2008).

    Article  Google Scholar 

  • 65.

    Shine, R., Webb, J. K., Fitzgerald, M. & Sumner, J. The impact of bush-rock removal on an endangered snake species, Hoplocephalus bungaroides (Serpentes: Elapidae). Wildl. Res. 25, 285 (1998).

    Article  Google Scholar 

  • 66.

    Webb, J. K., Pringle, R. M. & Shine, R. Intraguild predation, thermoregulation, and microhabitat selection by snakes. Behav. Ecol. 20, 271–277 (2009).

    Article  Google Scholar 

  • 67.

    Moilanen, A. & Hanski, I. Metapopulation dynamics: Effects of habitat quality and landscape structure. Ecology 79, 2503–2515 (1998).

    Article  Google Scholar 

  • 68.

    Iudicello, S., Weber, M. L. & Wieland, R. Fish, Markets, and Fishermen: The Economics of Overfishing (Island Press, 1999).

    Google Scholar 

  • 69.

    Shine, R. & Fitzgerald, M. Conservation and reproduction of an endangered species: The broad-headed snake, Hoplocephalus bungaroides (Elapidae). Aust. Zool. 25, 65–67 (1989).

    Article  Google Scholar 

  • 70.

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  ADS  Google Scholar 


  • Source: Ecology - nature.com

    Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China’s forest ecosystems

    Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species