Szolgay, J. et al. A regional comparative analysis of empirical and theoretical flood peak-volume relationships. J. Hydrol. Hydromech. 64, 367–381 (2016).
Google Scholar
Vogt, S. & Braun, M. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira. 15, 105–118 (2004).
Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).
Google Scholar
Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).
Google Scholar
Yakimovich, K. M., Engstrom, C. B. & Quarmby, L. M. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11, 1721 (2020).
Google Scholar
Hoham, R. W., Laursen, A. E., Clive, S. O. & Duval, B. Snow algae and other microbes in several alpine areas in New England. Proc 50th East. Snow Conf 165–173 (1993).
Domine, F. Should we not further study the impact of microbial activity on snow and polar atmospheric chemistry?. Microorganisms 7, 260 (2019).
Google Scholar
Hoham, R. W. & Duval, B. Microbial ecology of snow and freshwater ice Snow Ecology (Cambridge University Press, 2001).
Fukushima, H. Studies on cryophytes in Japan. Yokohama Munic. Univ. 43, 1–146 (1963).
Muramoto, K., Kato, S., Shitara, T., Hara, Y. & Nozaki, H. Morphological and Genetic Variation in the Cosmopolitan Snow Alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese Mountainous Area. Cytologia (Tokyo) 73, 91–96 (2008).
Google Scholar
Muramoto, K., Nakada, T., Shitara, T., Hara, Y. & Nozaki, H. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. Nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur. J. Phycol. 45, 27–37 (2010).
Google Scholar
Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).
Google Scholar
Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).
Google Scholar
Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).
Google Scholar
Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).
Google Scholar
Hanzelová, M., Vido, J., Škvarenina, J., Nalevanková, P. & Perháčová, Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia (Bratisl.) 73, 1177–1186 (2018).
Google Scholar
Pollock, R. What colors the mountain snow?. Sierra Club. Bull. 55, 18–20 (1970).
Negoro, H. Seasonal occurrence of the apterous wintr stoneflis in the mountaine and the high mountaine areas of Toyama Prefecture in Japan. Bull. Toyama Sci. Mus. 32, 61–69 (2009).
Jordan, S. et al. Loss of genetic diversity and increased subdivision in an endemic alpine stonefly threatened by climate change. PLoS ONE 11, e0157386 (2016).
Google Scholar
Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. https://doi.org/10.1111/jzo.12832 (2020).
Google Scholar
McInnes, S. J. & Pugh, P. J. A. Tardigrade Biogeography. in Water Bears: The Biology of Tardigrades (ed. Schill, R. O.) vol. 2 115–129 (2018).
Degma, P., Bertolani, R. & Guidetti, R. Actual checklist of Tardigrada species (2009–2019).
Segers, H. et al. Towards a List of Available Names in Zoology, partim Phylum Rotifera. Zootaxa 3179, 61 (2012).
Google Scholar
Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61 (2011).
Google Scholar
Zawierucha, K. et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat. Ecol. https://doi.org/10.1007/s10452-019-09707-2 (2019).
Google Scholar
Horikawa, D. D. et al. Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol. 82, 843–848 (2006).
Google Scholar
Ramløv, H. & Westh, P. Cryptobiosis in the Eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool. Anz. 240, 517–523 (2001).
Google Scholar
Guidetti, R., Massa, E., Bertolani, R., Rebecchi, L. & Cesari, M. Increasing knowledge of Antarctic biodiversity: new endemic taxa of tardigrades (Eutardigrada; Ramazzottiidae) and their evolutionary relationships. Syst. Biodivers. https://doi.org/10.1080/14772000.2019.1649737 (2019).
Google Scholar
Nelson, D. R., Bartels, P. J. & Fegley, S. R. Environmental correlates of tardigrade community structure in mosses and lichens in the Great Smoky Mountains National Park (Tennessee and North Carolina, USA). Zool. J. Linn. Soc. 188, 913–924 (2020).
Zawierucha, K. et al. Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet. Limnology 19, 141–150 (2018).
Google Scholar
Zawierucha, K., Buda, J. & Nawrot, A. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard). Ecol. Res. 34, 370–379 (2019).
Google Scholar
Hohberg, K. & Traunspurger, W. Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol. Fertil. Soils 41, 419–427 (2005).
Google Scholar
Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M. & Elster, J. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers Svalbard. Biogeosci. Discuss. 12, 11751–11795 (2015).
Google Scholar
Loreau, M., Naseem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives (Oxford University Press, 2002).
Jaroměřská, T. et al. Stable isotopic composition of top consumers in Arcticcryoconite holes: revealing divergent roles in a supraglacial trophic network. Biogeosci. 18, 1543–1557 (2021).
Khoshima, S. & Hidaka, T. Life cycle and adult migration of wingless winter stonefly (Eocapnia nivalis). Biol. Inland Water 2, 39–43 (1981).
Bryndová, M., Stec, D., Schill, R. O., Michalczyk, Ł & Devetter, M. Tardigrade dietary preferences and diet effects on tardigrade life history traits. Zool. J. Linn. Soc. 188, 865–877 (2020).
Google Scholar
Hohberg, K. & Traunspurger, W. Foraging theory and partial consumption in a tardigrade–nematode system. Behav. Ecol. 20, 884–890 (2009).
Google Scholar
Fukuhara, H. et al. Vertical distribution of invertebrates in red snow (Akashibo) at Ozegahara mire Central Japan. SIL Proc. 1922–2010(30), 1487–1492 (2010).
Altiero, T. & Rebecchi, L. Rearing tardigrades: results and problems. Zool Anz 240, 217–221 (2001).
Google Scholar
Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y. & Kudoh, S. Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the Snow Surface. PLoS ONE 6, e14690 (2011).
Google Scholar
Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y. & Kawachi, M. Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. Nov.. PLoS ONE 14, e0210986 (2019).
Google Scholar
Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).
Google Scholar
Horikawa, D. D. et al. Establishment of a rearing system of the Extremotolerant Tardigrade Ramazzottius varieornatus : a new model animal for astrobiology. Astrobiology 8, 549–556 (2008).
Google Scholar
Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775 (2016).
Google Scholar
Maruyama, I., Nakao, T., Shigeno, I., Ando, Y. & Hirayama, K. Application of unicellular algae Chlorella vulgaris for the mass culture of marine rotifer Brachionus. Hydrobiologia 358, 133–138 (1975).
Google Scholar
Serge, Y. M. & Edna, G. Environmental conditions and ecophysiological mechanisms which led to the 1988 chrysochromulina-polylepis bloom: an hypothesis. Oceanol. Acta 14, 397–413 (1991).
Kariya, Y. Holocene landscape evolution of a nivation hollow on Gassan volcano, northern Japan. CATENA 62, 57–76 (2005).
Google Scholar
Degma, P. Field and Laboratory Methods. In Water Bears: The Biology of Tardigrades Vol. 2 (ed. Schill, R. O.) 349–369 (Springer International Publishing, 2018).
Ito, M. Taxonomic Study on the Eutardigrada from the Northern Slope of Mt. Fuji, Central Japan, II. Family Hypsibiide. Proc. Jpn. Soc. Syst. Zool. 53, 18–39 (1995).
Abe, W. A new species of the genus Hypsibius (Tardigrada: Parachela: Hypsibiidae) from Sakhalin Island Far East Russia. Zoolog. Sci. 21, 957–962 (2004).
Google Scholar
Wallace, R. L., Snell, T. W. & Smith, H. A. Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates 4th edn (eds Thorp, J. H. & Rogers, D. C.) 225–271 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00013-9.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Hallas, T. E. & Yeates, G. W. Tardigrada of the soil and litter of a Danish beech forest. Pedobiologia 12, 287–304 (1972).
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15 (1965).
Google Scholar
Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA – Bioenerg. 975, 384–394 (1989).
Google Scholar
R Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2020).
Source: Ecology - nature.com