in

Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan

  • 1.

    Szolgay, J. et al. A regional comparative analysis of empirical and theoretical flood peak-volume relationships. J. Hydrol. Hydromech. 64, 367–381 (2016).

    Article 

    Google Scholar 

  • 2.

    Vogt, S. & Braun, M. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira. 15, 105–118 (2004).

    Google Scholar 

  • 3.

    Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article 

    Google Scholar 

  • 5.

    Yakimovich, K. M., Engstrom, C. B. & Quarmby, L. M. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11, 1721 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Hoham, R. W., Laursen, A. E., Clive, S. O. & Duval, B. Snow algae and other microbes in several alpine areas in New England. Proc 50th East. Snow Conf 165–173 (1993).

  • 7.

    Domine, F. Should we not further study the impact of microbial activity on snow and polar atmospheric chemistry?. Microorganisms 7, 260 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Hoham, R. W. & Duval, B. Microbial ecology of snow and freshwater ice Snow Ecology (Cambridge University Press, 2001).

    Google Scholar 

  • 9.

    Fukushima, H. Studies on cryophytes in Japan. Yokohama Munic. Univ. 43, 1–146 (1963).

    Google Scholar 

  • 10.

    Muramoto, K., Kato, S., Shitara, T., Hara, Y. & Nozaki, H. Morphological and Genetic Variation in the Cosmopolitan Snow Alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese Mountainous Area. Cytologia (Tokyo) 73, 91–96 (2008).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Muramoto, K., Nakada, T., Shitara, T., Hara, Y. & Nozaki, H. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. Nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur. J. Phycol. 45, 27–37 (2010).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).

    Article 

    Google Scholar 

  • 13.

    Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Hanzelová, M., Vido, J., Škvarenina, J., Nalevanková, P. & Perháčová, Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia (Bratisl.) 73, 1177–1186 (2018).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Pollock, R. What colors the mountain snow?. Sierra Club. Bull. 55, 18–20 (1970).

    Google Scholar 

  • 18.

    Negoro, H. Seasonal occurrence of the apterous wintr stoneflis in the mountaine and the high mountaine areas of Toyama Prefecture in Japan. Bull. Toyama Sci. Mus. 32, 61–69 (2009).

    Google Scholar 

  • 19.

    Jordan, S. et al. Loss of genetic diversity and increased subdivision in an endemic alpine stonefly threatened by climate change. PLoS ONE 11, e0157386 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. https://doi.org/10.1111/jzo.12832 (2020).

    Article 

    Google Scholar 

  • 21.

    McInnes, S. J. & Pugh, P. J. A. Tardigrade Biogeography. in Water Bears: The Biology of Tardigrades (ed. Schill, R. O.) vol. 2 115–129 (2018).

  • 22.

    Degma, P., Bertolani, R. & Guidetti, R. Actual checklist of Tardigrada species (2009–2019).

  • 23.

    Segers, H. et al. Towards a List of Available Names in Zoology, partim Phylum Rotifera. Zootaxa 3179, 61 (2012).

    Article 

    Google Scholar 

  • 24.

    Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61 (2011).

    Article 

    Google Scholar 

  • 25.

    Zawierucha, K. et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat. Ecol. https://doi.org/10.1007/s10452-019-09707-2 (2019).

    Article 

    Google Scholar 

  • 26.

    Horikawa, D. D. et al. Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol. 82, 843–848 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Ramløv, H. & Westh, P. Cryptobiosis in the Eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool. Anz. 240, 517–523 (2001).

    Article 

    Google Scholar 

  • 28.

    Guidetti, R., Massa, E., Bertolani, R., Rebecchi, L. & Cesari, M. Increasing knowledge of Antarctic biodiversity: new endemic taxa of tardigrades (Eutardigrada; Ramazzottiidae) and their evolutionary relationships. Syst. Biodivers. https://doi.org/10.1080/14772000.2019.1649737 (2019).

    Article 

    Google Scholar 

  • 29.

    Nelson, D. R., Bartels, P. J. & Fegley, S. R. Environmental correlates of tardigrade community structure in mosses and lichens in the Great Smoky Mountains National Park (Tennessee and North Carolina, USA). Zool. J. Linn. Soc. 188, 913–924 (2020).

    Google Scholar 

  • 30.

    Zawierucha, K. et al. Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet. Limnology 19, 141–150 (2018).

    Article 

    Google Scholar 

  • 31.

    Zawierucha, K., Buda, J. & Nawrot, A. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard). Ecol. Res. 34, 370–379 (2019).

    Article 

    Google Scholar 

  • 32.

    Hohberg, K. & Traunspurger, W. Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol. Fertil. Soils 41, 419–427 (2005).

    Article 

    Google Scholar 

  • 33.

    Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M. & Elster, J. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers Svalbard. Biogeosci. Discuss. 12, 11751–11795 (2015).

    ADS 

    Google Scholar 

  • 34.

    Loreau, M., Naseem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives (Oxford University Press, 2002).

    Google Scholar 

  • 35.

    Jaroměřská, T. et al. Stable isotopic composition of top consumers in Arcticcryoconite holes: revealing divergent roles in a supraglacial trophic network. Biogeosci. 18, 1543–1557 (2021).

  • 36.

    Khoshima, S. & Hidaka, T. Life cycle and adult migration of wingless winter stonefly (Eocapnia nivalis). Biol. Inland Water 2, 39–43 (1981).

    Google Scholar 

  • 37.

    Bryndová, M., Stec, D., Schill, R. O., Michalczyk, Ł & Devetter, M. Tardigrade dietary preferences and diet effects on tardigrade life history traits. Zool. J. Linn. Soc. 188, 865–877 (2020).

    Article 

    Google Scholar 

  • 38.

    Hohberg, K. & Traunspurger, W. Foraging theory and partial consumption in a tardigrade–nematode system. Behav. Ecol. 20, 884–890 (2009).

    Article 

    Google Scholar 

  • 39.

    Fukuhara, H. et al. Vertical distribution of invertebrates in red snow (Akashibo) at Ozegahara mire Central Japan. SIL Proc. 1922–2010(30), 1487–1492 (2010).

    Google Scholar 

  • 40.

    Altiero, T. & Rebecchi, L. Rearing tardigrades: results and problems. Zool Anz 240, 217–221 (2001).

    Article 

    Google Scholar 

  • 41.

    Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y. & Kudoh, S. Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the Snow Surface. PLoS ONE 6, e14690 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y. & Kawachi, M. Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. Nov.. PLoS ONE 14, e0210986 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Horikawa, D. D. et al. Establishment of a rearing system of the Extremotolerant Tardigrade Ramazzottius varieornatus : a new model animal for astrobiology. Astrobiology 8, 549–556 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775 (2016).

    Article 

    Google Scholar 

  • 46.

    Maruyama, I., Nakao, T., Shigeno, I., Ando, Y. & Hirayama, K. Application of unicellular algae Chlorella vulgaris for the mass culture of marine rotifer Brachionus. Hydrobiologia 358, 133–138 (1975).

    Article 

    Google Scholar 

  • 47.

    Serge, Y. M. & Edna, G. Environmental conditions and ecophysiological mechanisms which led to the 1988 chrysochromulina-polylepis bloom: an hypothesis. Oceanol. Acta 14, 397–413 (1991).

    Google Scholar 

  • 48.

    Kariya, Y. Holocene landscape evolution of a nivation hollow on Gassan volcano, northern Japan. CATENA 62, 57–76 (2005).

    Article 

    Google Scholar 

  • 49.

    Degma, P. Field and Laboratory Methods. In Water Bears: The Biology of Tardigrades Vol. 2 (ed. Schill, R. O.) 349–369 (Springer International Publishing, 2018).

    Google Scholar 

  • 50.

    Ito, M. Taxonomic Study on the Eutardigrada from the Northern Slope of Mt. Fuji, Central Japan, II. Family Hypsibiide. Proc. Jpn. Soc. Syst. Zool. 53, 18–39 (1995).

    Google Scholar 

  • 51.

    Abe, W. A new species of the genus Hypsibius (Tardigrada: Parachela: Hypsibiidae) from Sakhalin Island Far East Russia. Zoolog. Sci. 21, 957–962 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Wallace, R. L., Snell, T. W. & Smith, H. A. Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates 4th edn (eds Thorp, J. H. & Rogers, D. C.) 225–271 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00013-9.

    Google Scholar 

  • 53.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Hallas, T. E. & Yeates, G. W. Tardigrada of the soil and litter of a Danish beech forest. Pedobiologia 12, 287–304 (1972).

    Google Scholar 

  • 55.

    Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15 (1965).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA – Bioenerg. 975, 384–394 (1989).

    CAS 
    Article 

    Google Scholar 

  • 57.

    R Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2020).


  • Source: Ecology - nature.com

    Study predicts the oceans will start emitting ozone-depleting CFCs

    Understanding imperfections in fusion magnets